

NuDAQ / NuIPC

PCI-7200 / cPCI-7200
12MB/S High Speed

Digital Input/ Output Card
User’s Guide

@Copyright 1999~2000 ADLINK Technology Inc.
All Rights Reserved.

Manual Rev. 2.15: June 12, 2000

The information in this document is subject to change without prior notice in
order to improve reliability, design and function and does not represent a
commitment on the part of the manufacturer.

In no event will the manufacturer be liable for direct, indirect, special, incidental,
or consequential damages arising out of the use or inability to use the product or
documentation, even if advised of the possibility of such damages.

This document contains proprietary information protected by copyright. All
rights are reserved. No part of this manual may be reproduced by any
mechanical, electronic, or other means in any form without prior written
permission of the manufacturer.

Trademarks
NuDAQ, NuIPC, DAQBench are registered trademarks of ADLINK Technology
Inc.

Other product names mentioned herein are used for identification purposes only
and may be trademarks and/or registered trademarks of their respective
companies.

Getting service from ADLINK
Customer Satisfaction is always the most important thing for ADLINK Tech Inc.
If you need any help or service, please contact us and get it.

ADLINK Technology Inc.
Web Site http://www.ADLINK.com.tw
Sales & Service service@ADLINK.com.tw
Technical NuDAQ nudaq@ADLINK.com.tw
Support NuDAM nudam@ADLINK.com.tw
 NuIPC nuipc@ADLINK.com.tw
 NuPRO nupro@ADLINK.com.tw
 Software sw@ADLINK.com.tw
 AMB amb@ADLINK.com.tw
TEL +886-2-82265877 FAX +886-2-82265717
Address 9F, No. 166, Jian Yi Road, Chungho City, Taipei, 235 Taiwan,

R.O.C.
Please inform or FAX us of your detailed information for a prompt, satisfactory
and constant service.

Detailed Company Information
Company/Organization
Contact Person
E-mail Address
Address
Country
TEL FAX
Web Site

Questions
Product Model
Environment to Use � OS
 � Computer Brand
 � M/B : � CPU :
 � Chipset : � Bios :
 � Video Card :
 � Network Interface Card :
 � Other :

Challenge Description

Suggestions for ADLINK

Contents • i

CONTENTS

Chapter 1 Introduction.. 1
1.1 Applications..2
1.2 Features..2
1.3 Specifications ...3
1.4 Software Supporting...4

1.4.1 Programming Library..4
1.4.2 PCIS-LVIEW: LabVIEW ® Driver...5
1.4.3 PCIS-VEE: HP-VEE Driver..5
1.4.4 DAQBenchTM: ActiveX Controls ...5
1.4.5 PCIS-DDE: DDE Server and InTouchTM5
1.4.6 PCIS-ISG: ISaGRAFT M driver ...5
1.4.7 PCIS-ICL: InControlT M Driver...6
1.4.8 PCIS-OPC: OPC Server...6

Chapter 2 Installation ... 7
2.1 What You Have ...7
2.2 Unpacking...8
2.3 Device Installation for Windows Systems.......................8
2.4 cPCI/PCI-7200’s Layout...9
2.5 Hardware Installation Outline 11
2.6 Connector Pin Assignments... 12

2.6.1 PCI-7200 Pin Assignments..12
2.6.2 cPCI-7200 Pin Assignments..14

2.7 8254 for Timer Pacer Generation 15

Chapter 3 Registers Format................................... 16
3.1 I/O Registers Format... 16
3.2 Digital Input Register (BASE + 10) 17
3.3 Digital Output Register (BASE + 14) 17
3.4 DIO Status & Control Register (BASE + 18) 18
3.5 Interrupt Status & Control Register (BASE + 1C).......... 20

Chapter 4 Operation Theorem................................ 23
4.1 Direct Program Control... 23
4.2 Timer Pacer Mode... 24
4.3 External Clock Mode ... 25
4.4 Handshaking... 26

ii • Contents

4.5 Timing Characteristic.. 28

Chapter 5 C/C++ Libraries....................................... 31
5.1 Libraries Installation .. 31
5.2 Programming Guide.. 32

5.2.1 Naming Convention ...32
5.2.2 Data Types...32

5.3 _7200_Initial.. 33
5.4 _7200_Switch_Card_No .. 34
5.5 _7200_AUX_DI .. 34
5.6 _7200_AUX_DI_Channel ... 35
5.7 _7200_AUX_DO... 35
5.8 _7200_AUX_DO_Channel.. 36
5.9 _7200_DI ... 37
5.10 _7200_DI_Channel .. 37
5.11 _7200_DO ... 38
5.12 _7200_DO_Channel .. 39
5.13 _7200_Alloc_DMA_Mem ... 39
5.14 _7200_Free_DMA_Mem... 40
5.15 _7200_Alloc_DBDMA_Mem... 41
5.16 _7200_Free_DBDMA_Mem.. 42
5.17 _7200_DI_DMA_Start .. 42
5.18 _7200_DI_DMA_Status.. 45
5.19 _7200_DI_DMA_Stop .. 45
5.20 _7200_DblBufferMode... 46
5.21 _7200_CheckHalfReady .. 46
5.22 _7200_DblBufferTransfer.. 47
5.23 _7200_GetOverrunStatus.. 47
5.24 _7200_DO_DMA_Start... 48
5.25 _7200_DO_DMA_Status.. 49
5.26 _7200_DO_DMA_Stop ... 50
5.27 _7200_DI_Timer .. 51
5.28 _7200_DO_Timer... 52

Chapter 6 Double Buffer Mode Principle 54

Chapter 7 Limitation.. 56

Appendix A. 8254 Programmable Timer............. 57
A.1 The Intel (NEC) 8254 ... 57
A.2 The Control Byte ... 57

Contents • iii

A.3 Mode Definition... 59

Product Warranty/Service 61

How to Use This Guide
This manual is designed to help you use the PCI-7200 and cPCI-7200. The
functionality of PCI-7200 and cPCI-7200 are the same except that cPCI-7200
has 4 auxiliary digital input and output. Therefore, the “PCI-7200” represents
both PCI-7200 and cPCI-7200 if not specified.

The manual describes how to modify various settings on the PCI-7200 card to
meet your requirements. It is divided into seven chapters:

l Chapter 1, "Introduction," gives an overview of the product features,
applications, and specifications.

l Chapter 2, "Installation," describes how to install the PCI-7200. The
layout of PCI-7200 is shown, and the installation procedures, pin
assignment of connectors, and timer pacer generation are specified.

l Chapter 3, "Register Structure & Format," describes the low-level
register structure and format of the PCI-7200.

l Chapter 4, "Operation Theorem," describes how the PCI-7200 works.

l Chapter 5, "C/C++ & DLL Library," describes the high level C and
DLL library functions. It will help you to programming in DOS, Win
3.11, and Win-95 environments.

l Chapter 6, "Double Buffer Mode Principle," describes the data buffer
for double-buffered DMA DI operation.

l Chapter 7, "Limitation," describes three limitations on using
PCI-7200.

l Appendix A, "8254 Programmable Interval Timer“, describes the
detailed structure and register format.

Introduction • 1

1

Introduction

The PCI-7200/cPCI-7200 is PCI/CompactPCI form factor high-speed digital I/O
card, it consists of 32 digital input channels, and 32 digital output channels. High
performance designs and the state-of-the-art technology make this card
suitable for high-speed digital input and output applications.

The PCI-7200 performs high-speed data transfers using bus -mastering DMA
via 32-bit PCI bus architecture. The maximum data transfer rates can be up to
12MB per second. It is very suitable for interfacing high-speed peripherals and
your computer system.

Several different digital I/O operation modes are supported:

1. Direct Program Control: the digital inputs and outputs can be accessed and
controlled by its corresponding I/O ports directly.

2. Timer Pacer Mode: the digital input and output operations are handled by
internal timer pacer clock and transferred by bus mastering DMA.

3. External Clock Mode: the digital input operations are handled by external
input strobe signal (I_REQ) and transferred by bus mastering DMA.

4. Handshaking: through REQ signal and ACK signal, the digital I/O data can
have simple handshaking data transfer.

2 • Introduction

1.1 Applications

l Interface to high-speed peripherals

l High-speed data transfers from other computers

l Digital I/O control
l Interface to external high-speed A/D and D/A converter

l Digital pattern generator

l Waveform and pulse generation
l BCD interface driver

1.2 Features
The PCI-7200 high-speed DIO Card provides the following advanced features:

l 32 TTL digital input channels

l 32 TTL digital output channels

l Transfer up to 12M Bytes per second
l High output driving and low input loading

l 32-bit PCI bus, Plug and Play

l On-board internal timer pacer clock
l Internal timer controls input sampling rate

l Internal timer controls digital output rate

l ACK and REQ for handshaking
l On-board 32-byte FIFO for both digital input and output

l Extra 8 Kbytes digital input FIFO for cPCI-7200

l 4 auxiliary digital input and output channels (cPCI-7200 only)
l Diode terminators for 32 input channels and control signals

(cPCI-7200 only)
l Multiple interrupt sources are selectable by software

Introduction • 3

1.3 Specifications

♦ Digital I/O (DIO)

l Number of DI Channels: 32 TTL compatible
l Number of DO Channels: 32 TTL compatible

l Data Transfer Mode
� Program I/O
� Internal timer pacer transfer
� External I_REG strobe input
� Handshake data transfer

l Maximum Transfer Speed:
� 3 MHz (12MHz) by external clock, handshake or external strobe
� 2 MHz (8MHz) by internal timer pacer transfer

l FIFO: 8 words (32-bit) (for PCI-7200)
 2K + 8 words (32-bit) (for cPCI-7200)
l Input Voltage:

 Low: Min. 0V; Max. 0.8V
 High: Min. +2.0V

l Input Load:
 Low: +0.5V @ -0.6mA max.
 High: +2.7V @+20µA max.

l Output Voltage:
 Low: Min. 0V; Max. 0.5V
 High: Min. +2.7V

l Driving Capacity:
 Low: Max. +0.5V at 24mA (Sink)
 High: Min. 2.4V at -3.0mA (Source)
♦ Programmable Counter

l Device: 82C54-10, with a 4MHz time base

l Timer 0: DI clock source

l Timer 1: DO clock source

l Timer2: Base clock of Timer #0 and Timer #1

l Pacer Output: 0.00046 Hz ~ 2MHz

4 • Introduction

♦ General Specifications
l Operating Temperature: 0°C ~ 60°C

l Storage Temperature: -20°C ~ 80°C

l Humidity: 5 ~ 95%, non-condensing

l Connector:
PCI-7200: one 37-pin D-type and one 40-pin ribbon connector
cPCI-7200: one 100-pin SCSI-type connector

l Dimension:
PCI-7200: Compact size, only 148mm (L) X 102mm(H)
cPCI-7200: Standard 3U CompactPCI form factor

l Power Consumption:
PCI-7200: +5 V @ 720 mA typical
cPCI-7200: +5 V @ 820 mA typical

1.4 Software Supporting
ADLink provides versatile software drivers and packages for users’ different
approach to built-up a system. We not only provide programming library such
as DLL for many Windows systems, but also provide drivers for many software
package such as LabVIEW® , HP VEETM, DASYLabTM, InTouchTM, InControlTM,
ISaGRAFTM, and so on.

All the software options are included in the ADLink CD. The non-free software
drivers are protected with serial licensed code. Without the software serial
number, you can still install them and run the demo version for two hours for
demonstration purpose. Please contact with your dealer to purchase the formal
license serial code.

1.4.1 Programming Library
For customers who are writing their own programs, we provide function libraries
for many different operating systems, including:

u DOS Library: Borland C/C++ and Microsoft C++, the functions
descriptions are included in this user’s guide.

u Windows 95 DLL: For VB, VC++, Delphi, BC5, the functions
descriptions are included in this user’s guide.

u PCIS-DASK: Include device drivers and DLL for Windows 98,
Windows NT and Windows 2000. DLL is binary compatible across
Windows 98, Windows NT and Windows 2000. That means all
applications developed with PCIS-DASK are compatible across
Windows 98, Windows NT and Windows 2000. The developing
environment can be VB, VC++, Delphi, BC5, or any Windows
programming language that allows calls to a DLL. The user’s guide

Introduction • 5

and function reference manual of PCIS-DASK are in the CD. Please
refer the PDF manual files under
\\Manual_PDF\Software\PCIS-DASK\

The above software drivers are shipped with the board. Please refer to the
“Software Installation Guide” to install these drivers.

1.4.2 PCIS-LVIEW: LabVIEW® Driver

PCIS-LVIEW contains the VIs, which are used to interface with NI’s LabVIEW®
software package. The PCIS-LVIEW supports Windows 95/98/NT/2000. The
LabVIEW® drivers are free shipped with the board. You can install and use
them without license. For detail information about PCIS-LVIEW, please refer to
the user’s guide in the CD.
(\\Manual_PDF\Software\PCIS-LVIEW)

1.4.3 PCIS-VEE: HP-VEE Driver
The PCIS-VEE includes the user objects, which are used to interface with HP
VEE software package. PCIS-VEE supports Windows 95/98/NT. The HP-VEE
drivers are free shipped with the board. You can install and use them without
license. For detail information about PCIS-VEE, please refer to the user’s guide
in the CD.
(\\Manual_PDF\Software\PCIS-VEE)

1.4.4 DAQBenchTM: ActiveX Controls
We suggest the customers who are familiar with ActiveX controls and VB/VC++
programming use the DAQBenchTM ActiveX Control components library for
developing applications. The DAQBenchTM is designed under Windows NT/98.
For more detailed information about DAQBench, please refer to the user’s guide
in the CD.
(\\Manual_PDF\Software\DAQBench\DAQBench Manual.PDF)

1.4.5 PCIS-DDE: DDE Server and InTouchTM
DDE stands for Dynamic Data Exchange specifications. The PCIS-DDE
includes the PCI cards’ DDE server. The PCIS-DDE server is included in the
ADLINK CD. It needs license. The DDE server can be used conjunction with
any DDE client under Windows NT.

1.4.6 PCIS-ISG: ISaGRAFTM driver
The ISaGRAF WorkBench is an IEC1131-3 SoftPLC control program
development environment. The PCIS-ISG includes ADLink products’ target
drivers for ISaGRAF under Windows NT environment. The PCIS-ISG is
included in the ADLINK CD. It needs license.

6 • Introduction

1.4.7 PCIS-ICL: InControlTM Driver
PCIS-ICL is the InControl driver which support the Windows NT. The PCIS-ICL
is included in the ADLINK CD. It needs license.

1.4.8 PCIS-OPC: OPC Server
PCIS-OPC is an OPC Server, which can link with the OPC clients. There are
many software packages on the market can provide the OPC clients now. The
PCIS-OPC supports the Windows NT. It needs license.

Installation • 7

2

Installation

This chapter describes how to install the PCI-7200. At first, the content of the
package and the unpacking information that you should be careful are
described. Because the PCI-7200 is a plug and play device, there is no more
jumper or DIP switch setting for configuration. The Interrupt number and I/O port
address are assigned by the system BIOS during system boot up.

2.1 What You Have
In addition to this User's Manual, the package includes the following items:

l PCI-7200 Digital I/O & Counter Card
l Include ACL-10437: 40-pin to 37-pin D-Sub cable

 or
l cPCI-7200 Digital I/O & Counter Module for 3U CompactPCI

l Include 100-pin SCSI connector assembly

l ADLINK CD

l Software Installation Guide

If any of these items is missing or damaged, contact the dealer from whom you
purchased the product. Save the shipping materials and carton in case you want
to ship or store the product in the future.

8 • Installation

2.2 Unpacking
Your PCI-7200 card contains sensitive electronic components that can be easily
damaged by static electricity.

The card should be done on a grounded anti-static mat. The operator should be
wearing an anti-static wristband, grounded at the same point as the anti-static
mat.

Inspect the card module carton for obvious damage. Shipping and handling may
cause damage to your module. Be sure there are no shipping and handling
damages on the module before processing.

After opening the card module carton, extract the system module and place it
only on a grounded anti-static surface component side up.

Again inspect the module for damage. Press down on all the socketed IC's to
make sure that they are properly seated. Do this only with the module place on a
firm flat surface.

Note: DO NOT APPLY POWER TO THE CARD IF IT HAS BEEN
DAMAGED.

You are now ready to install your PCI-7200.

2.3 Device Installation for Windows Systems
Once Windows 95/98/2000 has started, the Plug and Play function of Windows
system will find the new NuDAQ/NuIPC cards. If this is the first time to install
NuDAQ/NuIPC cards in your Windows system , you will be informed to input the
device information source. Please refer to the “Software Installation Guide”
for the steps of installing the device.

Installation • 9

2.4 cPCI/PCI-7200’s Layout

C
N

1
P

C
I-

72
00

 R
ev

 A
1

C
N

2

A
L

T
E

R
A

P
C

I -
B

u
s

C
o

n
tr

o
ll

er

.
 .

.
 .

.
 .

.
 .

.
 .

.
 .

.
 .

.
 .

.
 .

.
 .

.
 .

.
 .

.
 .

.
 .

.
 .

.
 .

.
 .

.
 .

.
 .

.
 .

Figure 2.1(a) PCI-7200 Layout Diagram

10 • Installation

Figure 2.1(b) cPCI-7200 Layout Diagram

Installation • 11

2.5 Hardware Installation Outline

Hardware configuration
The PCI cards (or CompactPCI cards) are equipped with plug and play PCI
controller, it can request base addresses and interrupt according to PCI
standard. The system BIOS will install the system resource based on the PCI
cards’ configuration registers and system parameters (which are set by system
BIOS). Interrupt assignment and memory usage (I/O port locations) of the PCI
cards can be assigned by system BIOS only. These system resource
assignments are done on a board-by-board basis. It is not suggested to assign
the system resource by any other methods.

PCI slot selection
The PCI card can be inserted to any PCI slot without any configuration for
system resource. CompactPCI peripheral slots are marked with a circle on the
backplane. Please note that the PCI and CompactPCI system board must
provide bus-mastering capability to operate this board well.

Installation Procedures
Turn off your computer
Turn off all accessories (printer, modem, monitor, etc.) connected to your
computer.
Remove the cover from your computer.
Setup jumpers on the PCI or CompactPCI card.
Select a 32-bit PCI slot. PCI slot are short than ISA or EISA slots, and are
usually white or ivory.
Before handling the PCI cards, discharge any static buildup on your body by
touching the metal case of the computer. Hold the edge and do not touch the
components.
Position the board into the PCI slot you selected.
Secure the card in place at the rear panel of the system.

Running the 7200UTIL.EXE
The IRQ number and I/O port address can be configured by the system. By
using the 7200UTIL.EXE, you can get the above values and they are displayed
by this utility. A testing program is included in this utility, you can check if your
PCI-7200 can work properly. Refer Section 5.2 for further detailed information.

12 • Installation

2.6 Connector Pin Assignments

2.6.1 PCI-7200 Pin Assignments
The PCI-7200 comes equipped with one 37-pin D -Sub connector (CN2) located
on the rear mounting plate and one 40-pin female flat cable header connector
(CN1). The CN2 is located on the rear mounting plate; the CN1 is on front of the
board. Refer section 2.2 PCI-7200‘s layout.

CN2 is used for digital inputs (DI 0 ~ DI 15) and digital outputs (DO 0 ~ DO 15),
and the reminder digital I/O channels DI 16 ~ DI 31 and DO 16 ~ DO 31 are
presented on the CN1. The pin assignment of CN1 and CN2 is illustrated in the
figure 2.2 and 2.3.
Legend:
 DO n : Digital Output CH n
 DI n : Digital Input CH n
 GND : Ground
 ACK : ACK Signal of handshaking communication
 REQ : REQ Signal of handshaking communication
 I_TRG: Input signal to start the DI data sampling
 O_TRG: Output signal can be controlled by software

1

3

5

7

9

11

19

21

23

25

27

29

13

15

17

31

33

35

37

2

4

6

8

10

12

14

16

18

22

24

26

28

20

32

34

36

30

DI 17
DI 18
DI 19

DI 20

DI 28
DI 29
DI 30
DI 31

+5V
O_ACK
O_REQ

DO16DI 16

39

38

40

GND
O_TRG

DI 21

DI 23
DI 24
DI 25
DI 26

DI 22

DI 27

DO19
DO20

DO28
DO29
DO30
DO 31

DO21

DO23
DO24
DO25
DO26

DO22

DO27

DO17
DO18

N/C
N/CN/C

Figure 2.2 CN1 Pin Assignments

Installation • 13

1

2

3

4

5

6

10

11

12

13

14

15

7

8

9

16

17

18

19

20

21

22

23

24

25

26

27

28

30

31

32

33

29

35

36

37

34

DI 1
DI 2
DI 3
DI 4
DI 5
DI 6
DI 7
DI 8

DI10
DO10
DO11
DO12
DO13
DO14
DO15

DI 9

GND
I_TRG

DO0
DO1
DO2
DO3
DO4
DO5
DO6
DO7
DO8
DO9

DI 0

DI11
DI12
DI13
DI14
DI15
+5V

I_ACK
I_REQ

Figure 2.3 CN2 Pin Assignments

14 • Installation

2.6.2 cPCI-7200 Pin Assignments

(1)
(2)
(3)

(52)
(53)

(51)

(48)
(49)
(50)

(98)
(99)
(100)

(1) DO0 (26) O_TRG (51) DO1 (76)
GND
(2) DO2 (27) O_REQ (52) DO3 (77)
GND
(3) DO4 (28) O_ACK (53) DO5 (78)
GND
(4) DO6 (29) AUXIN2 (54) DO7 (79)
AuxOut2
(5) DO8 (30) AUXIN3 (55) DO9 (80)
AuxOut3
(6) DO10 (31) +5Vout (56) DO11 (81) GND
(7) DO12 (32) +5Vout (57) DO13 (82) GND
(8) DO14 (33) GND (58) DO15 (83) GND
(9) GND (34) DIN0 (59) GND (84) DIN1
(10) DO16 (35) DIN2 (60) DO17 (85) DIN3
(11) DO18 (36) DIN4 (61) DO19 (86) DIN5
(12) DO20 (37) DIN6 (62) DO21 (87) DIN7
(13) DO22 (38) DIN8 (63) DO23 (88) DIN9
(14) DO24 (39) DIN10 (64) DO25 (89) DIN11
(15) DO26 (40) DIN12 (65) DO27 (90) DIN13
(16) DO28 (41) DIN14 (66) DO29 (91) DIN15
(17) DO30 (42) GND (67) DO31 (92) GND
(18) GND (43) DIN16 (68) GND (93) DIN17
(19) +5Vout (44) DIN18 (69) GND (94)
DIN19

Installation • 15

2.7 8254 for Timer Pacer Generation

Timer 0

Timer 1

Timer 2

CLK0
GATE0 OUT0

CLK1
GATE1

CLK2
GATE2

OUT1

OUT2

8254 Timer/Counter

Digital Input Timer Pacer

Digital Output Timer Pacer

4MHz Clock

“H”

“H”

“H”

Figure 2.4 8254 configuration

The internal timer/counter 8254 on the PCI-7200 is configured as above
diagram (figure 2.4). User can use it to generate the timer pacer for both digital
input and digital output trigger.

The digital input timer pacer is from OUT0 (Timer 0), and the digital output timer
pacer is from OUT1 (Timer 1). Besides, Timer 0 and Timer 2 can be cascaded
together to generate more timer pacer frequency for digital input. Also, the
Timer 2 can be cascaded with Timer 1 for digital output.

pacer rate = 4 MHz / (C0 * C2)
 if Timer 0 & Timer 2 are cascaded
pacer rate = 4 MHz / C0
 if timer 0 & Timer 2 are not cascaded

The maximum pacer signal rate of input and output are 4MHz/2=2Mhz. The
minimum signal rate is 4MHz/65535/65535, which is a very slow frequency that
user may never use it.

For example, if you wish to get a pacer rate 2.5 kHz, you can set C0 = 40 and C2
= 40. That is
2.5KHz = 4Mhz / (40 x 40)

16 • Registers Format

3

Registers Format

3.1 I/O Registers Format
The PCI-7200 occupies 8 consecutive 32-bit I/O addresses in the PC I/O
address space and the cPCI-7200 occupies 9 consecutive 32-bit I/O addresses.
Table 4.1 shows the I/O Map

Address Read Write
Base + 0 Counter 0 Counter 0
Base + 4 Counter 1 Counter 1
Base + 8 Counter 2 Counter 2
Base + C --- CLK Control CW0
Base + 10 Digital Input Reg. ---

Base + 14 Digital Output
(Read-back) Digital Output Reg.

Base + 18 DIO Status & Control DIO Status &Control
Base + 1C INT Status & Control INT Status & Control
Base + 20
(cPCI-7200

only)
AUXDIO Reg. AUXDO Reg.

Caution: (1) I/O port is 32-bit width
 (2) 8-bit or 16-bit I/O access is not allowed.

Registers Format • 17

3.2 Digital Input Register (BASE + 10)
32 digital input channels can be read from this register

Address: BASE + 10
Attribute: READ Only
Data Format:

Byte 7 6 5 4 3 2 1 0
Base
+10 DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0

Base
+11

DI1
5

DI1
4

DI1
3

DI1
2

DI1
1

DI1
0 DI9 DI8

Base
+12

DI2
3

DI2
2

DI2
1

DI2
0

DI1
9

DI1
8

DI1
7

DI1
6

Base
+13

DI3
1

DI3
0

DI2
9

DI2
8

DI2
7

DI2
6

DI2
5

DI2
4

3.3 Digital Output Register (BASE + 14)
32 digital output channels can be write and read-back from this register

Address: BASE + 14
Attribute: READ/WRITE
Data Format:

Byte 7 6 5 4 3 2 1 0
Base
+14

DO
7

DO
6

DO
5

DO
4

DO
3

DO
2

DO
1

DO
0

Base
+15

DO
15

DO
14

DO
13

DO
12

DO
11

DO
10

DO
9

DO
8

Base
+16

DO
23

DO
22

DO
21

DO
20

DO
19

DO
18

DO
17

DO
16

Base
+17

DO
31

DO
30

DO
29

DO
28

DO
27

DO
26

DO
25

DO
24

The digital output status can be read back through the same location (BASE +
14)

18 • Registers Format

3.4 DIO Status & Control Register (BASE + 18)
The data transfer mode of digital input is controlled and status is checked
through this register.

Address: BASE + 18
Attribute: READ/WRITE
Data Format:

Byte 7 6 5 4 3 2 1 0
Base
+18

O_A
CK

DIN
_EN

I_T
RG

TRG
PL

I_FI
FO

I_TI
ME0

I_RE
Q

I_AC
K

Base
+19 ---- I_O

VER ---- ---- O_T
RG

O_FI
FO

O_TI
ME1

O_R
EQ

Base
+20 ---- ---- ---- ---- ---- ---- ---- O_U

ND
Base
+21 ---- ---- ---- ---- ---- ---- ---- ----

♦ Digital Input Mode Setting:
I_ACK: Input ACK Enable

1: Input ACK is enabled (input ACK will be asserted after
 input data is read by CPU or written to input FIFO)
0: Input ACK is disabled

 I_REQ: Input REQ Strobe Enabled
1: Use I_REQ edge to latch input data
0: I_REQ is disabled

I_TIME0: Input Timer 0 Enable
1: Input is sampled by falling edge of Counter 0 output (COUT0)
0: Input Timer 0 is disabled

 I_FIFO: Input FIFO Enable Mode
1: Input FIFO is enabled (input data is saved to input FIFO)
0: Input FIFO is disabled

TRGPOL: Input Trigger Polarity
1: I_TRG is Rising Edge Active
0: I_TRG is Falling Edge Active

 I_TRG: External Trigger Enable
1: Wait until I_TRG signal is active, digital input sampling will begin after

a rising or falling edge of I_TRG is coming.
0: Start input sampling immediately (if input control register is set)

 DIN_EN: Digital Input Enable
1: Digital Input Enable
0: Digital Input Disabled, when this bit is set as 0, all digital input

operation will be stopped.

Registers Format • 19

♦ Digital Output Mode Setting:
O_ACK: Output ACK Enable

1: Output ACK is enabled, the output circuit will wait for O_ACK after
O_REQ strobe is asserted.

0: Output ACK is disabled
O_REQ: Output REQ Enable

1: Output REQ is enabled, an O_REQ strobe will be generated after
output data is ready

0: Output REQ is disabled
O_TIME1: Output Timer 1 Enable

1: Output Timer 1 is enabled, output data is moved from output FIFO to
DO registers when output of Counter1 goes low.

0: Output Counter 1 is disabled
O_FIFO: Output FIFO Enable

1: Output FIFO is enabled (output data is moved from output FIFO)
0: Output FIFO is disabled

O_TRG: Digital Output Trigger Signal
This bit is used to control the O_TRG output of PCI-7200, the signal is on CN1
pin 36 of PCI-7200 or CN1 pin 26 of cPCI-7200 when

1: O_TRG 1 goes High (1)
0: O_TRG 1 goes Low (0)

♦ Digital I/O FIFO Status:
I_OVR: Input data overrun

1: Digital Input FIFO is full (overrun) during input data transfer
0: No input data overrun occurred

Input data overrun occurred, the I_OVR bit is set when input FIFO is full and
there is new input data coming in. This bit can be cleared by writing “1” to it.
O_UND: Output data FIFO is underrun

1: Output FIFO is empty during output data transfer
0: No output data underrun occurred

Output data underrun, the O_UND bit is set when output FIFO is empty and the
output request for new data, this bit can be cleared by writing “1” to it.

20 • Registers Format

3.5 Interrupt Status & Control Register (BASE + 1C)
The interrupt modes/status are set/checked through this register.

Address: BASE + 1C
Attribute: READ/WRITE
Data Format:

Byte 7 6 5 4 3 2 1 0
Base
+1C

SI_T
O

SI_R
EQ

SO_A
CK T2_EN T1_

EN
T0_
EN

II_R
EQ

IO_A
CK

Base
+1D

FIFO
FF

FIFO
EF

FIFOR
ST

REQ_N
EG

T1_
T2

T0_
T2

SI_T
2

SI_T
1

Base
+1E ---- ---- ---- ---- ---- ---- ---- ----

Base
+1F ---- ---- ---- ---- ---- ---- ---- ----

♦ Interrupt Control:
In PCI-7200, the interrupt can be triggered by many signal sources such as
O_ACK, I_REQ, timer 0, timer 1, and timer 2. The following bits control the
interrupt source:

IO_ACK: Interrupt is triggered by O_ACK signal.

1: O_ACK interrupt is enabled
0: O_ACK interrupt is disabled

II_REQ: Interrupt is triggered by I_REQ signal.
1: I_REQ interrupt is enabled
0: I_REQ interrupt is disabled

T0_EN: Interrupt is triggered by timer 0 output.
1: Timer 0 interrupt is enabled
0: Timer 0 interrupt is disabled

T1_EN: Interrupt is triggered by timer 1 output.
1: Timer 1 interrupt is enabled
0: Timer 1 interrupt is disabled

T2_EN: Interrupt is triggered by timer 2 output.
1: Timer 2 interrupt is enabled
0: Timer 2 interrupt is disabled

♦ Interrupt Status:
The following bits are used to check interrupt status:
SO_ACK: Status of O_ACK interrupt

1: O_ACK Interrupt occurred
0: No O_ACK interrupt

Registers Format • 21

SI_REQ: Status of I_REQ interrupt
 1: I_REQ Interrupt occurred
 0: No I_REQ Interrupt
SI_T0: Status of timer 0 interrupt
 1: OUT0 (output of timer 0) Interrupt occurred
 0: No timer 0 Interrupt
SI_T1: Status of timer 1 interrupt
 1: OUT1 (output of timer 1) Interrupt occurred
 0: No timer 1 Interrupt
SI_T2: Status of timer 2 interrupt
 1: OUT2 (output of timer 2) interrupt occurred
 0: No timer 2 Interrupt

Note: Writing 1 to the corresponding bit of the register can clear all the
interrupt status. In order to make the interrupt work properly, the interrupt
service routine has to clear all the interrupt status before end of the ISR.

♦ Timer Configuration Control:
The 8254 timer on the PCI-7200 can be configured as either timer 0 cascaded
with timer 2 or timer 1 cascaded with timer2. These configuration are controlled
by the following bits:
T0_T2: Timer 0 is cascaded with timer 2

1: Timer 0 and timer 2 are cascaded together, output of timer 2
connects to the clock input of timer 0.

0: Not cascaded, the 4 MHz clock is connected to the timer 0 clock
input.

T1_T2: Timer 1 is cascaded with timer 2
1: Timer 1 and timer 2 are cascaded together, output of timer 2

connects to the clock input of timer 1.
0: Not cascaded, the 4 MHz clock is connected to the timer 1 clock

input.

♦ I_REQ Polarity Selection:
When the input sampling is controlled by the I_REQ signal only, the I_REQ can
be programmed to be rising edge active or falling edge active.
REQ_NEG: I_REQ trigger polarity
 1: latch input data on falling edge of I_REQ
 0: latch input data on rising edge of I_REQ

♦ FIFO Control and Status (cPCI-7200 only):
The cPCI-7200 has an extra 2K samples digital input FIFO. The FIFO can be
cleared and monitored by the following bits:
FIFORST (Write only): Clear the on-board DI FIFO

1: Write 1 to clear the data of the FIFO.
0: No operation.

22 • Registers Format

FIFOEF (Read only): Empty flag of the DI FIFO
1: DI FIFO is empty.
0: DI FIFO is not empty.

FIFOFF (Read only): Full flag of the DI FIFO
1: DI FIFO is full.
0: DI FIFO is not full.

Note: The cPCI-7200 has 2 cascaded DI FIFOs. One is located in the PCI
controller chip, the other one is on the PCI-7200 board. The above bits only
control the on-board FIFO. In order to control the on-chip FIFO, please refer to
the AMCC-5933 data book.

Operation Theorem • 23

4

Operation Theorem

In PCI-7200, there are four data transfer modes can be used for digital I/O
access and control, these modes are:

1. Direct Program Control: the digital inputs and outputs can be read/written
and controlled by its corresponding I/O port address directly.

2. Internal Timer Pacer Mode : the digital input and output operations are
paced by internal timer pacer and transferred by bus mastering DMA.

3. External Clock Mode : the digital input operation is clocked by external
I_REQ strobe and transferred by bus mastering DMA.

4. Handshaking: through REQ and ACK signals , the digital I/O can have simple
handshaking data transfer.

4.1 Direct Program Control

The digital I/O operations can be controlled by I/O port BASE+10 for digital input
and BASE+14 for digital output.

The I/O port address BASE is assigned by system BIOS, please refer to Section
5 for more detailed description.
The digital OUT operation is:

 outport (BASE+14, 0xAAAAAAAA) // (A : 0 ~ F)

The digital IN operation is:

 value = inport (BASE+10) // The input status is save in the
 // value variable

24 • Operation Theorem

4.2 Timer Pacer Mode
The digital I/O access control is clocked by timer pacer, which is generated by
an interval programming timer/counter chip 8254. There are three timers on the
8254. The timer 0 is used to generate timer pacer for digital input, and timer 1 is
used for digital output. The configuration is illustrated as below.

Timer 0

Timer 1

Timer 2

CLK0
GATE0 OUT0

CLK1
GATE1

CLK2
GATE2

OUT1

OUT2

8254 Timer/Counter

Digital Input Timer Pacer

Digital Output Timer Pacer

4MHz Clock

“H”

“H”

“H”

The operation sequences are:
1. Define the frequency (timer pacer rate)

2. The digital input data are saved in FIFO after a timer pacer pulse is generated.
The sampling is controlled by timer pacer.

3. The data saved in FIFO will be transferred to main memory of your computer
system directly and automatically. This is controlled by bus mastering DMA
control, this function is supported by PCI controller chip.

The operation flow is show as below:

Timer 0
CLK0
GATE0 OUT0

8254 Timer/Counter

To Digital Input Trigger
Latch Digital Input

Digital Input FIFOBus mastering
DMA data Transfer

PC's Main Memory

1

2
3

Operation Theorem • 25

4.3 External Clock Mode
The digital input is clocked by external strobe, which is from the Pin 19 (I_REQ)
of CN2 (PCI-7200) or Pin 24 of CN1 (cPCI-7200). The operation sequence is
very similar to Timer Pacer Trigger. The only difference is the clock source.

1. The external input strobe is generated from outside device, and go through
the Pin 19 (I_REQ) of CN2 and to latch the digital input.

2. The digital input data are saved in FIFO after an I/O strobe signal is coming in.

3. The data saved in input FIFO will be transferred to main memory on your
computer system directly. This is controlled by bus mastering DMA control, this
function is supported by PCI

To Digital Input Trigger
Latch Digital
Input Data

Digital Input FIFOBus mastering
DMA data Transfer

PC's Main Memory

1

2
3

Pin 19 of CN2

26 • Operation Theorem

4.4 Handshaking
In PCI-7200, it also supports a handshaking digital I/O transfer mode. That is,
after input data is ready, an I_REQ is sent form external device, and I_ACK will
go high to acknowledge the data already accessed.

I_REQ & I_ACK for Digital Input
1. Digital Input Data is ready
2. An I_REQ signal is generated for digital input operation
3. Digital input data is saved to FIFO
4. An I_ACK signal is generated and sent to outside device
5. If the FIFO is not empty and PCI bus is not occupied, the data will be
transferred to main memory

Latch Digital Input
or Digital Output

Digital Input FIFOBus mastering
DMA data Transfer

PC's Main Memory

2

4 3

1

Digital Input DATA

5

IN_REQ

IN_ACK

Operation Theorem • 27

O_REQ & O_ACK for Digital Output
1. Digital Output Data is moved from PC memory to FIFO of PCI-7200 by using
DMA data mastering data transfer.
2. Move output data from FIFO to digital output circuit.
3. Output data is ready.
4. An O_REQ signal is generated and sent to outside device.
5. After an O_ACK is got, the step 2 to step 5 will be repeated again.
** If the FIFO is not full, the output data is moved form PC‘s main memory to
FIFO automatically.

Move Data to

Digital Output FIFOBus mastering
DMA data Transfer

PC's Main
Memory

2

4
3

1

Digital Output DATA

5

Digital Output
O_REQ

O_ACK

28 • Operation Theorem

4.5 Timing Characteristic
1. I_REQ as input data strobe (Rising Edge Active)

IN_REQ

t h t l

tcyc

valid data valid data

ts tn

DI0~DI31

t h 60ns t l 60ns

ts 2ns tn 30ns

tcyc 5 PCI CLK Cycle

2. I_REQ as input data strobe (Falling Edge Active)

IN_REQ

t h t l

tcyc

valid data valid data

ts tn
DI0~DI31

t h 60ns t l 60ns

ts 2ns tn 30ns

t cyc 5 PCI CLK Cycle

I_RE
Q

I_RE
Q

Operation Theorem • 29

3. I_REQ & I_ACK Handshaking

IN_REQ

t 1 t2

t3

valid data valid data

t5

t4

DI0~DI31

t 1 0ns t5 60ns

t2 0ns t4

t3 2 PCI CLK Cycle

IN_ACK

1 PCI CLK Cycle

Note : I_REQ must be asserted until I_ACK asserts, I_ACK will be asserted
until I_REQ de-asserts.

4. O_REQ as output data strobe

OUT_REQ

t h

tcyc

valid data valid data

ts
D00~D031

t s 19ns th 500nstcyc2 PCI CLK Cycles =

I_RE
Q
I_ACK

O_REQ

30 • Operation Theorem

5. O_REQ & O_ACK Handshaking

OUT_REQ

t1

t3

valid dataDO0~Do31

t1 19ns t3t2 1 PCI CLK Cycle

OUT_ACK

5 PCI CLK Cycle

valid data

t2

Note: O_ACK must be de-asserted before O_REQ asserts, O_ACK can be
asserted any time after O_REQ asserts, O_REQ will be reasserted after O_ACK is
asserted.

O_REQ

C/C++ Libraries • 31

5

C/C++ Libraries

This chapter describes the software library for operating this card. Only the
functions in DOS library and Windows 95 DLL are described. Please refer to the
PCIS-DASK function reference manual, which included in ADLINK CD, for the
descriptions of the Windows 98/NT/2000 DLL functions.

The function prototypes and some useful constants are defined in the header
files LIB directory (DOS) and INCLUDE directory (Windows 95). For Windows
95 DLL, the developing environment can be Visual Basic 4.0 or above, Visual
C/C++ 4.0 or above, Borland C++ 5.0 or above, Borland Delphi 2.x (32-bit) or
above, or any Windows programming language that allows calls to a DLL. It
provides the C/C++, VB, and Delphi include files.

5.1 Libraries Installation
Please refer to the “Software Installation Guide” for the detail information
about how to install the software libraries for DOS, or Windows 95 DLL, or
PCIS-DASK for Windows 98/NT/2000.

The device drivers and DLL functions of Windows 98/NT/2000 are included in
the PCIS-DASK. Please refer the PCIS-DASK user’s guide and function
reference, which included in the ADLINK CD, for detailed programming
information.

32 • C/C++ Libraries

5.2 Programming Guide

5.2.1 Naming Convention

The functions of the NuDAQ PCI cards or NuIPC CompactPCI cards’ software
driver are using full-names to represent the functions' real meaning. The naming
convention rules are:

In DOS Environment :

_{hardware_model}_{action_name}. e.g. _7200_Initial().

All functions in PCI-7200 driver are with 7200 as {hardware_model}. But they
can be used by PCI-7200, cPCI-7200.

In order to recognize the difference between DOS library and Windows 95
library, a capital "W" is put on the head of each function name of the Windows 95
DLL driver. e.g. W_7200_Initial().

5.2.2 Data Types

We defined some data type in Pci_7200.h (DOS) and Acl_pci.h (Windows 95).
These data types are used by NuDAQ Cards’ library. We suggest you to use
these data types in your application programs. The following table shows the
data type names and their range.

Type Name Description Range
U8 8-bit ASCII character 0 to 255
I16 16-bit signed integer -32768 to 32767
U16 16-bit unsigned integer 0 to 65535
I32 32-bit signed integer -2147483648 to 2147483647
U32 32-bit single-precision

floating-point
0 to 4294967295

F32 32-bit single-precision
floating-point

-3.402823E38 to 3.402823E38

F64 64-bit double-precision
floating-point

-1.797683134862315E308 to
1.797683134862315E309

Boolean Boolean logic value TRUE, FALSE

C/C++ Libraries • 33

5.3 _7200_Initial

@ Description
A PCI-7200 card is initialized according to the card number.
Because the PCI-7200 is PCI bus architecture and meets the plug and play
design, the IRQ and base_address (pass-through address) are assigned by
system BIOS directly. Every PCI-7200 card has to be initialized by this function
before calling other functions.

Note : Because configuration of PCI-7200 is handled by the system, there is no
jumpers or DMA selection on the PCI boards that need to be set up by the
users.

@ Syntax
Visual C++ (Windows 95)
int W_7200_Initial (U8 card_number, U16 *base_addresss, U8 *irq_no)

Visual Basic (Windows 95)
W_7200_Initial (ByVal card_number As Byte, base_addresss As Integer, irq_no
As Byte) As Long

C/C++ (DOS)
int _7200_Initial (U8 card_number, U16 *base_addresss, U8 *irq_no)

@ Argument
card_number : the card number to be initialized, only four cards can be
initialized, the card number must be CARD_1, CARD_2, CARD_3 or CARD_4.

base_address : the I/O port base address of the card, it is assigned by system
BIOS.

irq_no : system will give an available interrupt number to this card
automatically.

@ Return Code
ERR_NoError
ERR_InvalidBoardNumber
ERR_PCIBiosNotExist
ERR_PCICardNotExist
ERR_PCIIrqNotExist
ERR_BaseAddressError

34 • C/C++ Libraries

5.4 _7200_Switch_Card_No

@ Description
After initialized more than one PCI-7200 card, this function is used to select
which card is used currently.
@ Syntax
Visual C++ (Windows 95)
int W_7200_Switch_Card_No (U8 card_number)

Visual Basic (Windows 95)
W_7200_Switch_Card_No (ByVal card_number As Byte) As Long

C/C++ (DOS)
int _7200_Switch_Card_No (U8 card_number)

@ Argument
card_number : The card number to be initialized, four cards can be initialized,
the card number must be CARD_1, CARD_2, CARD_3, or CARD_4, but only
one card is active.

@ Return Code
ERR_NoError
ERR_InvalidBoardNoInit

5.5 _7200_AUX_DI

@ Description
Read data from auxiliary digital input port of cPCI-7200 card. You can get all 4
bits input data by using this function.
@ Syntax
Visual C++ (Windows 95)
int W_7200_AUX_DI (U32 *aux_di)

Visual Basic (Windows 95)
W_7200_DI (aux_di As Long) As Long

C/C++ (DOS)
int _7200_DI (U32 *aux_di)

@ Argument
aux_di : returns 4-bit value from auxiliary digital input port.

C/C++ Libraries • 35

@ Return Code
ERR_NoError
ERR_FunctionNotAvailable

5.6 _7200_AUX_DI_Channel

@ Description
Read data from auxiliary digital input channel of cPCI-7200 card. There are 4
digital input channels on the cPCI-7200 auxiliary digital input port. When
performs this function, the auxiliary digital input port is read and the value of the
corresponding channel is returned.

* channel means each bit of digital input port.

@ Syntax
Visual C++(Windows 95)
int W_7200_AUX_DI_Channel (U8 di_ch_no, Boolean *aux_data)

Visual Basic (Windows 95)
W_7200_AUX_DI_Channel (ByVal di_ch_no As Byte, aux_data As Byte) As
Long

C/C++ (DOS)
int _7200_AUX_DI_Channel (U8 di_ch_no, Boolean *aux_data)

@ Argument
di_ch_no : the DI channel number, the value has to be set
 within 0 and 3.
aux_data : return value, either 0 or 1.

@ Return Code
ERR_NoError
ERR_InvalidDIChannel
ERR_FunctionNotAvailable

5.7 _7200_AUX_DO

@ Description
Write data to auxiliary digital output port. There are 4 auxiliary digital outputs on
the cPCI-7200.

36 • C/C++ Libraries

@ Syntax
Visual C++ (Windows 95)
int W_7200_AUX_DO (U32 aux_do)

Visual Basic (Windows 95)
W_7200_AUX_DO (ByVal aux_do As Long) As Long

C/C++ (DOS)
int _7200_AUX_DO (U32 aux_do)

@ Argument
aux_do : value will be written to auxiliary digital output port

@ Return Code
ERR_NoError
ERR_FunctionNotAvailable

5.8 _7200_AUX_DO_Channel

@ Description
Write data to auxiliary digital output channel (bit). There are 4 auxiliary digital
output channels on the cPCI-7200. When performs this function, the digital
output data is written to the corresponding channel.

channel means each bit of digital input port

@ Syntax
Visual C++ (Windows 95)
int W_7200_AUX_DO_Channel (U8 do_ch_no, Boolean aux_data)

Visual Basic (Windows 95)
W_7200_AUX_DO_Channel (ByVal do_ch_no As Byte, ByVal aux_data As
Byte) As Long

C/C++ (DOS)
int _7200_AUX_DO_Channel (U8 do_ch_no, Boolean aux_data)

@ Argument
do_ch_no : the auxiliary DO channel number, the value has to
be set within 0 and 3.

aux_data : either 0 (OFF) or 1 (ON).

C/C++ Libraries • 37

@ Return Code
ERR_NoError
ERR_InvalidDOChannel
ERR_FunctionNotAvailable

5.9 _7200_DI

@ Description
This function is used to read data from digital input port. There are 32-bit digital
inputs on the PCI-7200. You can get all 32 input data from _7200_DI by using
this function.

@ Syntax
Visual C++ (Windows 95)
int W_7200_DI (U32 *di_data)

Visual Basic (Windows 95)
W_7200_DI (di_data As Long) As Long

C/C++ (DOS)
int _7200_DI (U32 *di_data)

@ Argument
di_data : returns all 32-bit value from digital port.

@ Return Code
ERR_NoError

5.10 _7200_DI_Channel

@ Description
This function is used to read data from digital input channels (bit). There are 32
digital input channels on the PCI-7200. When performs this function, the digital
input port is read and the value of the corresponding channel is returned.

* channel means each bit of digital input port.

@ Syntax
Visual C++(Windows 95)
int W_7200_DI_Channel (U8 di_ch_no, Boolean *di_data)

38 • C/C++ Libraries

Visual Basic (Windows 95)
W_7200_DI_Channel (ByVal di_ch_no As Byte, di_data As Byte) As Long

C/C++ (DOS)
int _7200_DI_Channel (U8 di_ch_no, Boolean *di_data)

@ Argument
di_ch_no : the DI channel number, the value has to be set
within 0 and 31.
di_data : return value, either 0 or 1.

@ Return Code
ERR_NoError
ERR_InvalidDIChannel

5.11 _7200_DO

@ Description
This function is used to write data to digital output port. There are 32 digital
outputs on the PCI-7200.

@ Syntax
Visual C++ (Windows 95)
int W_7200_DO (U32 do_data)

Visual Basic (Windows 95)
W_7200_DO (ByVal do_data As Long) As Long

C/C++ (DOS)
int _7200_DO (U32 do_data)

@ Argument
do_data : value will be written to digital output port

@ Return Code
ERR_NoError

C/C++ Libraries • 39

5.12 _7200_DO_Channel

@ Description
This function is used to write data to digital output channels (bit). There are 32
digital output channels on the PCI-7200. When performs this function, the digital
output data is written to the corresponding channel.

channel means each bit of digital input port

@ Syntax
Visual C++ (Windows 95)
int W_7200_DO_Channel (U8 do_ch_no, Boolean do_data)

Visual Basic (Windows 95)
W_7200_DO_Channel (ByVal do_ch_no As Byte, ByVal do_data As Byte) As
Long

C/C++ (DOS)
int _7200_DO_Channel (U8 do_ch_no, Boolean do_data)

@ Argument
do_ch_no : the DO channel number, the value has to be set
within 0 and 31.
do_data : either 0 (OFF) or 1 (ON).

@ Return Code
ERR_NoError
ERR_InvalidDOChannel

5.13 _7200_Alloc_DMA_Mem

@ Description
Contact Windows 95/98 system to allocate a block of contiguous memory for
single-buffered DMA transfer. This function is only available in Windows 95/98
version.
@ Syntax

Visual C++ (Windows 95)
int W_7200_Alloc_DMA_Mem (U32 *buff, U32 *handle, U32 buf_size, U32
*actual_size)

40 • C/C++ Libraries

Visual Basic (Windows 95)
W_7200_Alloc_DMA_Mem (buff As Long, handle As Long, ByVal buf_size As
Long, actual_size As Long) As Long
@ Argument

buff : The start address of the user buffer for DMA data
transfer. This buffer will be attached to the DMA
memory allocated by this function. When using this
DMA memory handle as an argument of
W_7200_DI_DMA_Start function, DI data will be
copied to this buffer. When using this DMA memory
handle as an argument of W_7200_DO_DMA_Start
function, the data stored in this buffer will be the DO
data.

handle: The handle of system DMA memory returned from
system. Use this handle in _7200_DI_DMA_Start or
_7200_DO_DMA_Start.

buf_size: Bytes to allocate. Please be careful, the unit of this
parameter is BYTE, not SAMPLE.

actual_size: The actual size system allocate for DMA memory. The
unit is BYTE. If system is not able to get a block of
contiguous memory of specified buf_size, it will allocate
a block of memory as large as it can. In this case, this
function returns ERR_SmallerDMAMemAllocated, and
actual_size denotes the actual size of allocated
memory.

@ Return Code

ERR_NoError ERR_SmallerDMAMemAllocated

5.14 _7200_Free_DMA_Mem

@ Description
Release the system DMA memory under Windows 95/98 environment. This
function is only available in Windows 95/98 version.
@ Syntax
Visual C++ (Windows 95)
int W_7200_Free_DMA_Mem (U32 handle)
Visual Basic (Windows 95)
W_7200_Free_DMA_Mem (ByVal handle As Long) As Long

C/C++ Libraries • 41

@ Argument
handle: The handle of system DMA memory to release.
@ Return Code
ERR_NoError

5.15 _7200_Alloc_DBDMA_Mem

@ Description
Contact Windows 95/98 system to allocate a block of contiguous memory as
circular buffer for double-buffered DMA DI transfer. This function is only
available in Windows 95/98 version. For double-buffered transfer principle,
please refer to Section 6 “Double Buffered Mode Principle”.
@ Syntax
Visual C++ (Windows 95)
int W_7200_Alloc_DBDMA_Mem (U32 *buff,U32 *handle, U32 buf_size, U32
*actual_size)

Visual Basic (Windows 95)
W_7200_Alloc_DBDMA_Mem (buff As Long, handle As Long, ByVal buf_size
As Long, actual_size As Long) As Long
@ Argument
buff : There is a dummy buffer attached to the DMA
memory this function will allocate. But this buffer need to have size equal to or
more than buf_size bytes.

handle: The handle of system DMA memory returned from
system. Use this handle in _7200_DI_DMA_Start.

buf_size: Bytes to allocate. This is the half size of circular
buffer in byte. That is, this is the size of each half buffer in byte.

actual_size: The actual DMA memory size system allocate for
each half buffer. If system is not able to get a block of contiguous memory of
specified buf_size, it will allocate a block of memory as large as it can. In this
case, this function returns ERR_SmallerDMAMemAllocated, and actual_size
denotes the actual size of allocated memory for each half of circular buffer.

@ Return Code
ERR_NoError
ERR_SmallerDMAMemAllocated

42 • C/C++ Libraries

5.16 _7200_Free_DBDMA_Mem

@ Description
Release a system circular buffer DMA memory under Windows 95/98
environment. This function is only available in Windows 95/98 version. For
double-buffered transfer principle, please refer to Section 6 “Double Buffered
Mode Principle”.
@ Syntax
Visual C++ (Windows 95)
int W_7200_Free_DBDMA_Mem (U32 handle)
Visual Basic (Windows 95)
W_7200_Free_DBDMA_Mem (ByVal handle As Long) As Long
@ Argument
handle: The handle of system DMA memory to release.
@ Return Code
ERR_NoError

5.17 _7200_DI_DMA_Start

@ Description
The function will perform digital input N times with DMA data transfer by using
one of the following four sampling modes :

1. pacer trigger (internal timer trigger)
2. external rising edge I_IRQ
3. external falling edge I_IRQ
4. I_REQ & I_ACK handshaking

It will take place i n the background which will not stop until the Nth input data is
transferred or your program execute _7200_DI_DMA_Stop function to stop the
process.

After executing this function, it is necessary to check the status of the operation
by using the function _7200_DI_DMA_Status. The PCI-7200 Bus mastering
DMA is different from traditional PC style DMA. Its description is as follow :

Bus Mastering DMA mode of PCI-7200 :

PCI bus mastering offers the highest possible speed available on the PCI-7200.
When the function _7200_DI_DMA_Start is executed, it will enable PCI bus
master operation. This is conceptually similar to DMA (Direct Memory Access)
transfers in a PC but is really PCI bus mastering. It does not use an 8237-style

C/C++ Libraries • 43

DMA controller in the host computer and therefore isn't blocked in 64K max.
groups. PCI-7200 bus mastering works as follows:

1. To set up bus mastering, first do all normal PCI-7200 initialization
necessary to control the board in status mode. This includes testing for the
presence of the PCI BIOS, determining the base addresses, slot number,
vendor and device ID's, I/O or memory, space allocation, etc. Please make sure
your PCI-7200 is plugged in a bus master slot, otherwise this function will not be
workable.

2. Load the PCI controller with the count and 32-bit physical address of the
start of previously allocated destination memory, which will accept data. This
count is the number of bytes (not long words!) transferred during the bus master
operation and can be a large number up to 64 million (2^26) bytes. Since the
PCI-7200 transfers are always long words, this is 16 million long words (2^24).

3. After the input sampling is started, the input data is stored in the FIFO of
PCI controller. Each bus mastering data transfer continually tests if any data in
the FIFO and then blocks transfer, the system will continuously loop until the
conditions are satisfied again but will not exit the block transfer cycle if the block
count is not complete . If there is momentarily no input data, the PCI-7200 will
relinquish the bus temporarily but returns immediately when more input data
appear. This operation continues until the whole block is done.

4. This operation proceeds transparently until the PCI controller transfer byte
count is reached. All normal PCI bus operation applies here such as a receiver
which cannot accept the transfers, higher priority devices requesting the PCI
bus, etc. Remember that only one PCI initiator can have bus mastering at any
one time. However, review the PCI priority and "fairness" rules. Also study the
effects of the Latency Timer. And be aware that the PCI priority strategy (round
robin rotated, fixed priority, custom, etc.) is unique to your host PC and is
explicitly not defined by the PCI standard. You must determine this priority
scheme for your own PC (or replace it).

The interrupt request from the PCI controller can be optionally set up to indicate
that this loanword count is complete although this can also be determined by
polling the PCI controller.

@ Syntax
Visual C++ (Windows 95)
int W_7200_DI_DMA_Start (U8 mode, U32 count, U32 handle, Boolean
wait_trg, U8 trg_pol, Boolean clear_fifo, Boolean disable_di)

44 • C/C++ Libraries

Visual Basic (Windows 95)
W_7200_DI_DMA_Start (ByVal mode As Byte, ByVal count As Long, ByVal
handle As Long, ByVal wait_trg as Byte, ByVal trg_pol As Byte, ByVal clear_fifo
As Byte, ByVal disable_di As Byte) As Long

C/C++ (DOS)
int _7200_DI_DMA_Start (U8 mode, U32 count, U32 *di_buffer, Boolean
wait_trig, U8 trig_pol, Boolean clear_fifo, Boolean disable_di)

@ Argument
mode : Digital Input trigger modes
 DI_MODE0 : Internal timer pacer (TIME 0)
 DI_MODE1 : external signal I_REQ rising edge
 DI_MODE2 : external signal I_REQ falling edge
 DI_MODE3 : I_REQ & I_ACK handshaking
count : For non-double-buffered DI, this parameter
denotes the number of digital input samples to read. For double-buffered DI, it
is the size of circular buffer (in samples, not in bytes!).

handle (Win 95): the handle of system DMA memory. In Windows 95
environment, before calling _7200_DI_DMA_Start, depending on using
double-buffer mode or not, either _7200_Alloc_DMA_Mem or
_7200_Alloc_DBDMA_Mem must be called to allocate a contiguous DMA
memory and get the handle of it.

di_buffer (DOS): If double buffer mode is disabled, this is the start address of
the memory buffer to store the DI data. If double buffer mode is enabled, this
memory buffer is actually of no use. But the buffer size still must be larger than
the number of count (that is, count*4 bytes). You can use this buffer as transfer
buffer in _7200_DblBufferTransfer to make use of this buffer.

 **This memory should be double-word alignment.
wait_trig : The waiting status of trigger
 DI_NONWAITING : the input sampling will be start
immediately

 DI_WAITING : the input samples waiting rising or falling edge trigger to start DI
trig_pol : trigger polarity
 DI_RISING : rising edge trigger
 DI_FALLING : falling edge trigger
clear_fifo : 0: retain the FIFO data
 1: clear FIFO data before perform digital input
disable_di : 0: digital input operation still active after DMA
transfer complete

 1: disable digital input operation immediately when DMA transfer complete

@ Return Code
ERR_NoError
ERR_BoardNoInit

C/C++ Libraries • 45

ERR_InvalidDIOMode
ERR_InvalidDIOCnt
ERR_NotDWordAlign
ERR_DMATransferNotAllowed

5.18 _7200_DI_DMA_Status

@ Description
Since the _7200_DI_DMA_Start function is executed in background, you can
issue this function to check its operation status. This function only works when
double-buffer mode is set as disable.
@ Syntax
Visual C++ (Windows 95)
int W_7200_DI_DMA_Status (U8 *status, U32 *count)

Visual Basic (Windows 95)
W_7200_AD_Status (status As Byte, count As Long) As Long

C/C++ (DOS)
int _7200_AD_DMA_Status (U8 *status, U32 *count)
@ Argument
status : status of the DMA data transfer
 0 : DI_DMA_STOP : DMA is completed
 1 : DI_DMA_RUN : DMA is not completed
count : the numbers of DI data which has been transferred.
@ Return Code
ERR_NoError

5.19 _7200_DI_DMA_Stop

@ Description
This function is used to stop the DMA data transferring. After executing this
function, the _7200_DI_DMA_Start function is stopped. The function returns
the number of the data which has been transferred, no matter if the digital input
DMA data transfer is stopped by this function or by the DMA terminal count ISR.
@ Syntax
Visual C++ (Windows 95)
int W_7200_DI_DMA_Stop (U32 * count)

Visual Basic (Windows 95)
W_7200_DI_DMA_Stop (count As Long) As Long

46 • C/C++ Libraries

C/C++ (DOS)
int _7200_DI_DMA_Stop (U32 *count)

@ Argument
count : the number of DI data which has been transferred.
@ Return Code
ERR_NoError
ERR_BoardNoInit

5.20 _7200_DblBufferMode

@ Description
This function is used to enable or disable double buffer mode for DMA DI
operation.
@ Syntax
Visual C++ (Windows 95)
int W_7200_DblBufferMode (Boolean db_flag)

Visual Basic (Windows 95)
W_7200_DblBufferMode (ByVal db_flag As Byte) As Long

C/C++ (DOS)
int _7200_CheckHalfReady (Boolean db_flag)
@ Argument
db_flag : 1 : double buffer mode enabled
 0 : double buffer mode disabled
@ Return Code
ERR_NoError

5.21 _7200_CheckHalfReady

@ Description
When you use _7200_DI_DMA_Start to sample digital input data and double
buffer mode is set as enable. You must use _7200_CheckHalfReady to check
data ready (data half full) or not in the circular buffer, and using
_7200_DblBufferTransfer to get data.
@ Syntax
Visual C++ (Windows 95)
int W_7200_CheckHalfReady (Boolean * halfReady)

C/C++ Libraries • 47

Visual Basic (Windows 95)
W_7200_CheckHalfReady (halfReady As Byte) As Long

C/C++ (DOS)
int _7200_CheckHalfReady (Booelan *halfReady)
@ Argument
halfReady : 1 (TRUE) or 0 (FALSE)
@ Return Code
ERR_NoError

5.22 _7200_DblBufferTransfer

@ Description
Using this function to copy the input data in the circular buffer to the transfer
buffer. It copies half of the circular buffer, either first half or second half, to the
transfer buffer.
@ Syntax
Visual C++ (Windows 95)
int W_7200_DblBufferTransfer (U32 *userBuffer)

Visual Basic (Windows 95)
W_7200_DblBufferTransfer (userBuffer As Long) As Long

C/C++ (DOS)
int _7200_DblBufferTransfer (U32 *userBuffer)
@ Argument
userBuffer: the start address of the transfer buffer. W_7200_DblBufferTransfer
function copies half of the circular buffer to userBuffer.
@ Return Code
ERR_NoError
ERR_NotHalfReady

5.23 _7200_GetOverrunStatus

@ Description
When you use _7200_DI_DMA_Start to convert Digital I/O data with double
buffer mode enabled, and if you do not use _7200_DblBufferTransfer to move
converted data then the double buffer overrun will occur, using this function to
check overrun count.

48 • C/C++ Libraries

@ Syntax
Visual C++ (Windows 95)
int W_7200_GetOverrunStatus (U32 * overrunCount)

Visual Basic (Windows 95)
int W_7200_GetOverrunStatus (overrunCount As Long) As Long

C/C++ (DOS)
int _7200_GetOverrunStatus (U32 *overrunCount)

@ Argument
overrunCount : number of overrun counts.

@ Return Code
ERR_NoError

5.24 _7200_DO_DMA_Start

@ Description
The function will perform digital output N times with DMA data transfer by using
the following four sampling modes :

1. pacer trigger (internal timer trigger, TIME 1)
2. Internal timer pacer with O_REQ enable
3. O_REQ & O_ACK handshaking

It will takes place in the background which will not be stop until the Nth
conversion has been completed or your program execute
_7200_DO_DMA_Stop function to stop the process. After executing this
function, it is necessary to check the status of the operation by using the
function _7200_DO_DMA_Status.

@ Syntax
Visual C++ (Windows 95)
int W_7200_DO_DMA_Start (U8 mode, U32 count, U32 handle, Boolean
repeat)

Visual Basic (Windows 95)
W_7200_DO_DMA_Start (ByVal mode As Byte, ByVal count As Long, ByVal
handle As Long, ByVal repeat as Byte) As Long

C/C++ (DOS)

C/C++ Libraries • 49

int _7200_DO_DMA_Start (U8 mode, U32 count, U32 *do_buffer, Boolean
repeat)

@ Argument
mode : Digital output trigger modes
 DO_MODE_0 : Internal timer pacer (TIME 1)
 DO_MODE_1 : Internal timer pacer with
 O_REQ enable
 DO_MODE_2 : O_REQ & I_REQ handshaking
count : the sample number of digital output data (in
 samples, not in bytes!)
handle (Win 95): the handle of system DMA memory. In Windows 95
environment, before calling W_7200_DO_DMA_Start,
W_7200_Alloc_DMA_Mem must be called to allocate a contiguous DMA
memory and get the handle of it. Also W_7200_Alloc_DMA_Mem will attach a
buffer to DMA memory. The DO data is stored in the buffer attached to this
handle.

do_buffer (DOS) : the start address of the memory buffer to store the DO
data.

 ** This memory should be double-word alignment
repeat : The digital output will be continuous or only one
 shot.
 CONTINUOUS : digital output will be continuous
 until the _7200_DO_DMA_STOP is called.
 ONE_SHOT : digital output only one-shot.

@ Return Code
ERR_NoError
ERR_InvalidDIMode
ERR_InvalidBoardNumber
ERR_BoardNoInit
ERR_InvalidDIOCnt
ERR_NotDWordAlign
ERR_DMATransferNotAllowed

5.25 _7200_DO_DMA_Status

@ Description
Since the _7200_DO_DMA_Start function is executed in background, you can
issue the function _7200_DO_DMA_Status to check its operation status.
@ Syntax
Visual C++ (Windows 95)
int W_7200_DO_DMA_Status (U8 *status, U32 * count)

50 • C/C++ Libraries

Visual Basic (Windows 95)
W_7200_DO_Status (status As Byte, count As Long) As Long

C/C++ (DOS)
int _7200_DO_DMA_Status (U8 *status , U32 *count)

@ Argument
status : status of the DMA data transfer

0 : DO_DMA_STOP : DMA is completed
1 : DO_DMA_RUN : DMA is not completed

count : the numbers of DO data which has been transferred.

@ Return Code
ERR_NoError

5.26 _7200_DO_DMA_Stop

@ Description
This function is used to stop the DMA DO operation. After executing this
function, the _7200_DO_DMA_Start function is stopped. The function returns
the number of the data which has been transferred, no matter if the digital output
DMA data transfer is stopped by this function or by the DMA terminal count ISR.
@ Syntax
Visual C++ (Windows 95)
int W_7200_DO_DMA_Stop (U32 *count)

Visual Basic (Windows 95)
W_7200_DO_DMA_Stop (count As Long) As Long

C/C++ (DOS)
int _7200_DO_DMA_Stop (U32 *count)

@ Argument
count : the number of digital output data which has been transferred.

@ Return Code
ERR_NoError
ERR_BoardNoInit

C/C++ Libraries • 51

5.27 _7200_DI_Timer

@ Description
This function is used to set the internal timer pacer for digital input. There are
two configurations for the internal timer pacer :

Non-cascaded (One COUNTER 0 only)

Counter 0
CLK0
GATE0 OUT0

8254 Timer/Counter
4MHz Input

Digital Input Trigger

Timer pacer frequency = 4Mhz / C0

2. Cascaded (TIME2 cascaded with COUNTER0)

Counter 0

Counter 1

Counter 2

CLK0
GATE0 OUT0

CLK1
GATE1

CLK2
GATE2

OUT1

OUT2

8254 Timer/Counter

4MHz Input

Digital Input Trigger

Timer pacer frequency = 4Mhz / (C0 * C2)

@ Syntax
Visual C++ (Windows 95)
int W_7200_DI_Timer (U16 c0, U16 c2, Boolean mode)

Visual Basic (Windows 95)
W_7200_DI_Timer (ByVal c0 As Integer, ByVal c2 As Integer, ByVal mode As
Byte) As Long

C/C++ (DOS)
int _7200_DI_Timer (U16 c0, U16 c2, Boolean mode)

52 • C/C++ Libraries

@ Argument
c0 : frequency divider of Counter #0. Valid value
 ranges from 2 to 65535.
c2 : frequency divider of Counter #2. Valid value
 ranges from 2 to 65535.

Note : Since the Integer type in Visual Basic is signed integer. Its range is
within -32768 and 32767. In Visual Basic, if you want to set c0 or c2 as value
larger than 32767, please set it as the intended value minus 65536. For
example, if you want to set c0 as 40000, please set c0 as
40000-65536=-25536.

mode : TIMER_NONCASCADE or TIMER_CASCADE

@ Return Code
ERR_NoError
ERR_InvalidBoardNumber
ERR_InvalidTimerMode
ERR_BoardNoInit

5.28 _7200_DO_Timer

@ Description
This function is used to set the internal timer pacer for digital output. There are
two configurations for the internal timer pacer :

1. Non-cascaded (One COUNTER 0 only)

Counter 1
CLK0
GATE0 OUT0

8254 Timer/Counter
4MHz Input

Digital Output Trigger

Timer pacer frequency = 4Mhz / C1

C/C++ Libraries • 53

2. Cascaded (TIME2 cascaded with COUNTER0)

Counter 0

Counter 1

Counter 2

CLK0
GATE0 OUT0

CLK1
GATE1

CLK2
GATE2

OUT1

OUT2

8254 Timer/Counter

4MHz Input
Digital Input Trigger

Timer pacer frequency = 4Mhz / (C1 * C2)

@ Syntax
Visual C++ (Windows 95)
int W_7200_DO_Timer (U16 c1, U16 c2, Booelan mode)

Visual Basic (Windows 95)
W_7200_DO_Timer (ByVal c1 As Integer, ByVal c2 As Integer, ByVal mode As
Byte) As Long

C/C++ (DOS)
int _7200_DO_Timer (U16 c1, U16 c2, Boolean mode)

@ Argument
c1 : frequency divider of Counter #1
c2 : frequency divider of Counter #2

Note : Since the Integer type in Visual Basic is signed integer. Its range is
within -32768 and 32767. In Visual Basic, if you want to set c1 or c2 as value
larger than 32767, please set it as the intended value minus 65536. For
example, if you want to set c1 as 40000, please set c1 as 40000-65536 =
-25536.

mode : TIMER_NONCASCADE or TIMER_CASCADE

@ Return Code
ERR_NoError
ERR_InvalidBoardNumber
ERR_InvalidTimerMode
ERR_BoardNoInit

54 • Double Buffer Mode Principle

6

Double Buffer Mode Principle

The data buffer for double-buffered DMA DI operation is a circular buffer
logically. It logically divided into two equal halves. The double-buffered DI
begins when device starts writing data into the first half of the circular buffer
(Figure 6 -1a). After device begins writing to the second half of the circular buffer,
you can copy the data from the first half into the transfer buffer (Figure 6-1b).
You now can process the data in the transfer buffer according to application
needs. After the board has filled the second half of the circular buffer, the board
returns to the first half buffer and overwrites the old data. You now can copy the
second half of the circular buffer to the transfer buffer (Figure 6 -1c). The data in
the transfer buffer is again available for process. The process can be repeated
endlessly to provide a continuous stream of data to your application (Figure
6-1d).

Double Buffer Mode Principle • 55

Incoming DMA
input data Circular Buffer

Transfer Buffer

a b

c d

> > >

> > >> >

Empty Buffer Untransferred Data Transferred Data

> >

Figure 6-1

The PCI-7200 double buffer mode functions were designed according to the
principle described above. If you use _7200_DblBufferMode() to enable double
buffer mode, the following _7200_DI_DMA_Start() will perform double-buffered
DMA DI. You can call _7200_CheckHalfReady() to check if data in the circular
buffer is half-full and ready for copying to the transfer buffer. Then you can call
_7200_DblBufferTransfer() to copy data from the ready half buffer to the
transfer buffer.
In Win-95 version, W_7200_Alloc_DBDMA_Mem() is needed to allocates a
contiguous DMA memory for the circular buffer. The buf_size argument of
W_7200_Alloc_DBDMA_Mem() is the half size of circular buffer in byte, that is,
the size of each half buffer in byte. The DMA memory is referenced by the return
parameter handle. This memory is system memory, users are not allowed to
access it directly.

56 • 8254 Programmable Interval Time

7

Limitation

The 12 MB/sec data transfer rate can only be possibly achieved in a system in
which the PCI-7200 card is the only device using the bus, but the speed can not
be guaranteed due to the limited FIFO depth.
PCI-7200 supports three input clock modes, internal clock, external clock, and
handshaking modes. The first two modes cannot guarantee the input data
integrity in high-speed data rate because of the limited FIFO depth and the
PCI-bus latency variation. The handshaking mode is the only mode that data
integrity can be guaranteed. In handshaking mode, you can expect 12 MB/sec
data rate in average but the speed is not guaranteed.
The guaranteed data rate with internal clock or external clock mode is 1MB/sec
in a machine that PCI-7200 card is the only device using the bus.
The largest transfer size (in bytes) PCI-7200 can perform is 64 MB.

Appendix A 8254 Programmable Interval Time • 57

Appendix A. 8254
Programmable Timer

Note : The material of this section is adopted from
“Intel Microprocessor and Peripheral Handbook Vol. II --Peripheral”

A.1 The Intel (NEC) 8254
The Intel (NEC) 8254 contains three independent, programmable, multi-mode
16 bit counter/timers. The three independent 16 bit counters can be clocked at
rates from DC to 5 MHz. Each counter can be individually programmed with 6
different operating modes by appropriately formatted control words. The most
commonly uses for the 8254 in microprocessor based system are:

• programmable baud rate generator
• event counter
• binary rate multiplier
• real-time clock
• digital one-shot
• motor control

For more information about the 8254, please refer to the NEC Microprocessors
and peripherals or Intel Microprocessor and Peripheral Handbook.

A.2 The Control Byte
The 8254 occupies 8 I/O address locations in the PCI-7200 I/O map. As shown
below.

Base + 0 LSB OR MSB OF COUNTER 0
Base + 4 LSB OR MSB OF COUNTER 1
Base + 8 LSB OR MSB OF COUNTER 2
Base + C CONTROL BYTE for Chip 0

Before loading or reading any of these individual counters, the control byte
(Base + C) must be loaded first. The format of control byte is :

58 • Appendix A 8254 Programmable Interval Time

Control Byte : (Base + 7, Base + 11)

Bi
t 7 6 5 4 3 2 1 0

 SC
1

SC
0

RL
1

RL
0 M2 M1 M0 BCD

SC1 & SC1 - Select Counter (Bit7 & Bit 6)

SC1 SC0 COUNTER
0 0 0
0 1 1
1 0 2
1 1 ILLEGAL

RL1 & RL0 - Select Read/Load operation (Bit 5 & Bit 4)

RL1 RL0 OPERATION
0 0 COUNTER LATCH
0 1 READ/LOAD LSB
1 0 READ/LOAD MSB
1 1 READ/LOAD LSB FIRST, THEN MSB

M2, M1 & M0 - Select Operating Mode (Bit 3, Bit 2, & Bit 1)

M2 M1 M0 MODE
0 0 0 0
0 0 1 1
x 1 0 2
x 1 1 3
1 0 0 4
1 0 1 5

BCD - Select Binary/BCD Counting (Bit 0)

0 BINARY COUNTER 16-BITS

1 BINARY CODED DECIMAL (BCD) COUNTER
(4 DECADES)

Note: 1. The count of the binary counter is from 0 up to 65,535.
 2. The count of the BCD counter is from 0 up to 99,999.

Appendix A 8254 Programmable Interval Time • 59

A.3 Mode Definition
In 8254, there are six different operating modes can be selected. They are :

• Mode 0 : interrupt on terminal count
The output will be initially low after the mode set operation. After the count is
loaded into the selected count register, the output will remain low and the
counter will count. When terminal count is reached, the output will go high and
remain high until the selected count register is reloaded with the mode or a new
count is loaded. The counter continues to decrement after terminal count has
been reached.

Rewriting a counter register during counting results in the following:

(1) Write 1st byte stops the current counting.
(2) Write 2nd byte starts the new count.

• Mode 1 : Programmable One-Shot.
The output will go low on the count following the rising edge of the gate input.
The output will go high on the terminal count. If a new count value is loaded
while the output is low it will not affect the duration of the one-shot pulse until the
succeeding trigger. The current count can be read at anytime without affecting
the one-shot pulse.

The one-shot is retriggerable, hence the output will remain low for the full count
after any rising edge of the gate input.

• Mode 2 : Rate Generator.
Divided by N counter. The output will be low for one period of the input clock.
The period from one output pulse to the next equals the number of input counts
in the count register. If the count register is reloaded between output pulses the
present period will not be affected, but the subsequent period will reflect the new
value.

The gate input when low, will force the output high. When the gate input goes
high, the counter will start form the initial count. Thus, the gate input can be used
to synchronize by software.

When this mode is set, the output will remain high until after the count register is
loaded. The output then can also be synchronized by software.

60 • Appendix A 8254 Programmable Interval Time

• Mode 3 : Square Wave Rate Generator.
Similar to MODE 2 except that the output will remain high until one half the count
has been completed (or even numbers) and go low for the other half of the
count. This is accomplished by decrement the counter by two on the falling edge
of each clock pulse. When the counter reaches terminal count, the state of the
output is changed and the counter is reloaded with the full count and the whole
process is repeated.

if the count is odd and the output is high, the first clock pulse (after the count is
loaded) decrements the count by 1. Subsequent clock pulses decrement the
clock by 2 after time-out, the output goes low and the full count is reloaded. The
first clock pulse (following the reload) decrements the counter by 3. Subsequent
clock pulses decrement the count by 2 until time-out. Then the whole process is
repeated. In this way, if the count is odd, the output will be high for (N + 1)/2
counts and low for (N - 1)/2 counts.

In Modes 2 and 3, if a CLK source other then the system clock is used, GATE
should be pulsed immediately following Way Rate of a new count value.

• Mode 4 : Software Triggered Strobe.
After the mode is set, the output will be high. When the count is loaded, the
counter will begin counting. On terminal count, the output will go low for one
input clock period, then will go high again.

If the count register is reloaded during counting, the new count will be loaded on
the next CLK pulse. The count will be inhibited while the GATE input is low.

• Mode 5 : Hardware Triggered Strobe.
The counter will start counting after the rising edge of the trigger input and will
go low for one clock period when the terminal count is reached. The counter is
retriggerable. the output will not go low until the full count after the rising edge of
any trigger.

The detailed des cription of the mode of 8254, please refer the Intel Microsystem
Components Handbook.

Product Warranty/Service • 61

Product Warranty/Service

Seller warrants that equipment furnished will be free form defects in material
and workmanship for a period of one year from the confirmed date of purchase
of the original buyer and that upon written notice of any such defect, Seller will,
at its option, repair or replace the defective item under the terms of this warranty,
subject to the provisions and specific exclusions listed herein.

This warranty shall not apply to equipment that has been previously repaired or
altered outside our plant in any way as to, in the judgment of the manufacturer,
affect its reliability. Nor will it apply if the equipment has been used in a manner
exceeding its specifications or if the serial number has been removed.

Seller does not assume any liability for consequential damages as a result from
our products uses, and in any event our liability shall not exceed the original
selling price of the equipment.

The equipment warranty shall constitute the sole and exclusive remedy of any
Buyer of Seller equipment and the sole and exclusive liability of the Seller, its
successors or assigns, in connection with equipment purchased and in lieu of all
other warranties expressed implied or statutory, including, but not limited to, any
implied warranty of merchant ability or fitness and all other obligations or
liabilities of seller, its successors or assigns.

The equipment must be returned postage-prepaid. Package it securely and
insure it. You will be charged for parts and labor if you lack proof of date of
purchase, or if the warranty period is expired.

