cPCI-9116®/cPCI-9116R®

64 Ch, 16 bit, 250KS/s Analog input Card For 3U CompactPCI

User's Guide

©Copyright 2002 ADLINK Technology Inc.

All Rights Reserved.

Manual Rev. 1.10: April 28, 2003

Part No: 50-15002-101

The information in this document is subject to change without prior notice in order to improve reliability, design and function and does not represent a commitment on the part of the manufacturer.

In no event will the manufacturer be liable for direct, indirect, special, incidental, or consequential damages arising out of the use or inability to use the product or documentation, even if advised of the possibility of such damages.

This document contains proprietary information protected by copyright. All rights are reserved. No part of this manual may be reproduced by any mechanical, electronic, or other means in any form without prior written permission of the manufacturer.

Trademarks

NuDAQ®, NuIPC® are registered trademarks of ADLINK Technology Inc.

Other products names mentioned herein are used for identification purposes only and may be trademarks and/or registered trademarks of their respective companies.

Getting service from ADLINK

Customer Satisfaction is the most important priority for ADLINK Tech Inc. If you need any help or service, please contact us.

ADLINK Technology Inc.			
Web Site	http://www.adlinktech.com		
Sales & Service	Service@adlinktech.com		
	NuDAQ + USBDAQ	nudaq@adlir	hktech.com
Technical Support	Automation	automation@adlinktech.com	
	NuIPC	nuipc@adlinl	ktech.com
	NuPRO / EBC	nupro@adlin	ktech.com
TEL	+886-2-82265877	FAX	+886-2-82265717
Address	9F, No. 166, Jian Yi Road, Chungho City, Taipei, 235 Taiwan.		

Please email or FAX us of your detailed information for a prompt, satisfactory and constant service.

	Detailed Compar	ny Informati	on
Company/Organization			
Contact Person			
E-mail Address			
Address			
Country			
TEL		FAX	
Web Site			
	Question	IS	
Product Model			
Environment to Use	OS: Computer Brand: M/B: Chipset: Video Card: Network Interface Car Other:	CPU: BIOS: rd:	
Detail Description			
Suggestions to ADLINK			

Table of Contents

Table	¹ S	.iv
Figur	es	v
Outlir	ne of Chapters	vi
Chap	ter 1 Introduction	1
1.1	Features	
1.2	Applications	
1.3	Specifications	
1.4	Software Support 1.4.1 Programming Library	
	 1.4.2 PCIS-LVIEW: LabVIEW[®] Driver 1.4.3 DAQBench[™]: ActiveX Controls 	0
<u>.</u> .		
Chap	ter 2 Installation	
2.1	What You Have	
2.2	Unpacking	
2.3	cPCI-9116 and cPCI-9116R Layout	
2.4	PCI Configuration	
Chap	ter 3 Signal Connections	13
3.1	Connectors and Pin Assignment	13
	3.1.1 100-pin SCSI-type connector (J1)	
	3.1.2 Legend of J1	
3.2	Analog Input Signal Connection	
	3.2.1 Types of signal sources	
3.3	3.2.2 Input Configurations	
	Digital I/O Connection	
•	ter 4 Registers	
4.1	I/O Port Address	
4.2	Internal Timer/Counter Register	
4.3	General Purpose Timer/Counter Register	22
4.4	General Purpose Timer/Counter Control Register	
4.5 4.6	A/D Data Registers	
4.0 4.7	Channel Gain Queue Register A/D & FIFO Control Register	
4.8	A/D & FIFO Status Register	
4.9	Digital I/O register	
4.10	A/D Trigger Mode Register	
4.11	Interrupt Control Register	
4.12	Interrupt Status Register	

Chap	ter 5 Op	eration Theory	.34
5.1	A/D Cor	nversion	.34
	5.1.1	A/D Conversion Procedure	
	5.1.2	Software conversion with polling data transfer acquisition	
		mode (Software Polling)	.35
	5.1.3	Programmable scan acquisition mode	.36
	5.1.4	A/D Data Transfer Modes	.47
5.2	Digital I	nput and Output	
5.3	General	Purpose Timer/Counter Operation	.49
Chap	ter 6 C/C	C++ Library	.51
6.1	Libraries	s Installation	.51
6.2		nming Guide	
	6.2.1	Naming Convention	
	6.2.2	Data Types	
	6.2.3	Sample Programs List (DOS)	.53
6.3	Initial fu	nctions	.54
	6.3.1	_9116_Initial	.54
	6.3.2	_9116_AD_Clr_DFIFO	.55
6.4		ctions	
	6.4.1	_9116_DI	
	6.4.2	_9116_DO	
6.5		nnel Gain Queue configuration functions	
	6.5.1	_9116_AD_Clr_CFIFO	
	6.5.2	_9116_AD_Set_CFIFO	
	6.5.3	_9116_AD_CFIFO_SetDone	
6.6		ware-Polling functions	
	6.6.1	_9116_AD_Acquire	
6.7	•	ger control functions	
	6.7.1	_9116_AD_Trig_Ctrl	.62
		_9116_AD_Set_TrigMode	
		_9116_AD_Set_TrigPol	
		_9116_AD_Set_Timebase	
		_9116_AD_Set_Delay_SRC	
~ ~		_9116_AD_Set_M_enable	
6.8		nter setting functions	
	6.8.1	_9116_AD_Set_SC	
	6.8.2	_9116_AD_Set_SI	
	6.8.3 6.8.4	_9116_AD_Set_S/2	
	6.8.4 6.8.5	_9116_AD_Set_DIV _9116_AD_Set_DLY1	
	6.8.6 6.8.6	_9116_AD_Set_DL Y1 _9116_AD_Set_M	
	6.8.0 6.8.7		
	0. <i>ŏ.1</i>	_9116_AD_Set_Retrig	.08

6.9	AD one-	-shot scan data acquisition with DMA transfer functions	69
		_9116_AD_DMA_Start	
	6.9.2	9116_AD_DMA_Status	70
		9116 AD DMA Stop	
6.10	AD one-	-shot scan data acquisition with interrupt- transfer functions.	72
	6.10.1	_9116_AD_INT_Start	72
	6.10.2	_9116_AD_INT_Status	73
	6.10.3	_9116_AD_INT_Stop	74
6.11	AD cont	tinuous scan data acquisition with double-buffered DMA	
		functions	
		_9116_DblBufferMode	
		_9116_DblBufferTransfer	
		_9116_GetOverrunStatus	
6.12	General	Purpose Timer/Counter functions	77
		_9116_GP0_Set_Mode	
		_9116_GP0_Set_Count	
		_9116_GP0_Set_CLK	
		_9116_GP0_Set_GATE_SRC	
		_9116_GP0_Set_UPDOWN_SRC	
	6.12.6	_9116_GP0_Set_UPDOWN	80
		_9116_GP0_EN	
	6.12.8	_9116_GP0_Read_Count	81
Chap	ter 7 Sof	ftware Utility & Calibration	82
7.1	Running	g 9116util.exe program	82
7.2		ion	
	7.2.1		
	7.2.2	VR Assignment	
		A/D Adjustment	
7.3		nal Testing	
Warra	anty Poli	icy	87
		····	•••

Tables

Legend of J1 Connector	15
Timer/Counter Register Address	21
General Purpose Timer/Counter Register	22
General Purpose Timer/Counter Control Register	22
GPTC0's Mode selection	23
A/D Data Registers	24
Channel Gain Queue Register	24
Gain Selection Bits	25
A/D & FIFO Control Register	26
A/D & FIFO Status Register	27
Digital I/O register (Read)	29
Digital I/O register (Write)	29
A/D Trigger Mode Register	30
Trigger Mode Selection Bits	31
Interrupt Control Register	31
Interrupt Status Register	33
Functions of VRs	84
	Legend of J1 Connector I/O Port Address Timer/Counter Register Address General Purpose Timer/Counter Register GPTCO's Mode selection A/D Data Registers Channel Gain Queue Register Gain Selection Bits A/D & FIFO Control Register A/D & FIFO Status Register Digital I/O register (Read) Digital I/O register (Write) A/D Trigger Mode Register Trigger Mode Selection Bits Interrupt Control Register Interrupt Status Register Functions of VRs

Figures

Figure 1:	PCB Layout of the cPCI-9116	.10
Figure 2:	PCB Layout of cPCI-9116R and Rear I/O adaptor	.11
Figure 3:	J1 Pin Assignments	
Figure 4:	Single-ended Mode and Floating sources	.16
Figure 5:	Ground-referenced source and differential input	
Figure 6:	Floating source and differential input	.17
Figure 7:	Ground-referenced source and User Common Mode	
	connections	.18
Figure 8:	Digital I/O Connection	.18
Figure 9:	Scan Timing	.37
Figure 10:	Pre-trigger (trigger occurs after M scans)	.40
Figure 11:	Pre-trigger (trigger with scan is in progress)	.40
Figure 12:	Pre-trigger with M_enable = 0 (trigger occurs before M	
	scans)	.41
Figure 13:	Pre-trigger with M_enable = 1	.42
Figure 14:	Middle trigger with M_enable = 1	.43
Figure 15:	Middle trigger (trigger with scan is in progress)	.44
Figure 16:	Post trigger	.44
Figure 17:	Delay trigger	.45
Figure 18:	Post trigger with re-trigger	.46
Figure 19:	General-purpose Timer/Counter model	.49
Figure 20:	Mode 0 Operation	
Figure 21:	Mode 1 Operation	.50
Figure 22:	CPCI-9116 Utility Main Screen	.83
Figure 23:	A/D Adjustment menu Screen	
Figure 24:	cPCI-9116 Function Testing Screen	86

Outline of Chapters

This manual is designed to help you use the 9116 series. The manual describes how to modify various settings on the card to meet your requirements. It is divided into seven chapters:

- **Chapter1,** "Introduction", gives an overview of the product features, applications, and specifications.
- Chapter 2, "Installation", describes how to install the 9116 series. The layout of 9116 series is shown.
- Chapter 3, "Signal Connection", describes the connectors' pin assignment and how to connect external signal and devices to the 9116 series card.
- Chapter 4, "Registers", describes the details of the registers and its structure. This information is important for programmers who want to control the hardware with low-level programming.
- Chapter 5, "Operation theory", describes the working theory of the 9116 series card. The A/D, DIO and timer/counter functions are introduced. Also, some programming concepts are specified.
- **Chapter 6, "Software Utility & Calibration"**, describes how to run the utility program included in the software CD and how to calibrate the 9116 series card for accurate measurements.

1

Introduction

The cPCI-9116 series products are advanced data acquisition cards based on the 32-bit CompactPCI architecture. The 9116 series include:

- cPCI-9116: 16-bit 250KHz DAS card for 3U CompactPCI
 - cPCI-9116R: 16-bit 250KHz DAS card for 3U CompactPCI with Rear I/O connector

The 9116 series DAS cards use state-of-the-art technology making it an ideal for data logging and signal analysis applications in medical, process control, etc.

1.1 Features

The 9116 series CompactPCI Advanced Data Acquisition Card provides the following advanced features:

- 32-bit PCI-Bus, plug and play
- Up to 64 single-ended inputs or 32 differential inputs, mixing of using SE and DI analog signal sources
- 16-bit analog input resolution
- On-board A/D 1K FIFO memory
- 512 words analog input Channel Gain Queue spaces
- Sampling rate up to 250KS/s
- Bipolar or Unipolar input signals
- Programmable gain of x1, x2, x4, x8
- Jumper-less and software configurable
- Five A/D trigger modes: software trigger, pre-trigger, post-trigger, middle-trigger and delay-trigger
- Software Polling, Interrupt and Bus-mastering DMA data transfer available
- 8 digital input and 8 digital output channels
- 100-pin D-type SCSI-II connector for cPCI-9116
- 100-pin D-type SCSI-II connector on a rear I/O transition board for cPCI-9116R
- Compact size: standard compact PCI 3U size

1.2 Applications

- Automotive Testing
- Cable Testing
- Transient signal measurement
- ATE
- Laboratory Automation
- Biotech measurement

1.3 Specifications

- Analog Input (A/D)
 - Converter: LT1606 (or equivalent) 250KHz
 - Number of channels: (programmable)
 - ✓ 64 single-ended (SE)
 - ✓ 32 differential input (DI)
 - ✓ Mixing of SE and DI analog signal between channel allowed
 - A/D Data FIFO Buffer Size: 1024 locations
 - Channel Gain Queue Length: 512 words configurations
 - Resolution: 16-bit
 - Input Range: (Controlled by Channel Gain Queue)
 - **Bipolar:** ± 5V, ±2.5V, ±1.25V, ±0.625V
 - **Unipolar:** 0~10V, 0~5V, 0~2.5V, 0~1.25
 - CMRR (DC to 60 Hz, typical)

Input Range	CMRR
±5, 0~10V	87dB
±2.5, 0~5V	90dB
±1.25, 0~2.5V	92dB
±0.625, 0~1.25V	93dB

- Overvoltage Protection: Continuous \pm 35V maximum
- Accuracy: 0.01% of FSR
- Input Impedance: 100 M Ω | 6pF
- Time-base source:
 - ✓ Internal 24MHz
 - ✓ External clock Input (fmax: 24MHz, fmin: 1MHz)
- Programmable scan interval and sampling rate (divided from time-base source)

• Trigger Mode:

- ✓ Software-trigger.
- ✓ Pre-trigger.
- ✓ Post-trigger.
- ✓ Middle-Trigger.
- ✓ Delay Trigger
- Data Transfer:
 - ✓ Polling.
 - ✓ EOC interrupt transfer.
 - ✓ FIFO half-full Interrupt transfer.
 - ✓ Bus-mastering DMA.
- Data Throughput: 250KHz (maximum)
- Digital I/O (DIO)
 - Channel: 8 TTL compatible digital inputs and outputs
 - Input Voltage:
 - ✓ Low: VIL=0.8 V max. IIL=0.2mA max.
 - High: VIH=2.0V max. IIH=0.02mA max
 - Output Voltage:
 - ✓ Low: VOL=0.5 V max. IOL=8mA max.
 - ✓ High: VOH=2.7V min; IOH=400µA
- General Purpose Timer/ Counter
 - Number of channel: One 16-bit Up/Down Timer/Counter
 - Clock Input: Internal 24MHz or External CLK input up to 20MHz

- General Specifications
 - Connector: 100-pin D-type SCSI-II connector
 - Operating Temperature: 0° C ~ 60° C
 - Storage Temperature: -20° C ~ 80° C
 - Humidity: 5 ~ 95%, non-condensing
 - Power Consumption:
 - ✓ +5V @ 560mA typical
 - ✓ +3.3V@ 100mA typical
 - ±15V (pin35, pin85) Output Current (max): 5mA
 - +5V(pin49, pin99) Output Current (max): 500mA
 - Dimension: Standard Compact PCI 3U size

1.4 Software Support

ADLINK provides versatile software drivers and packages for users' different approach to building a system. We not only provide programming libraries such as DLL for many Windows systems, but also provide drivers for other software packages such as LabVIEW®.

All software options are included in the ADLINK CD. Non-free software drivers are protected with licensing codes. Without the software code, you can install and run the demo version for two hours for trial/demonstration purposes. Please contact ADLINK dealers to purchase the formal license.

1.4.1 Programming Library

For customers who are writing their own programs, we provide function libraries for many different operating systems, including:

- PCIS-DASK: Include device drivers and DLL for Windows 98, Windows NT and Windows 2000. DLL is binary compatible across Windows 98, Windows NT and Windows 2000. That means all applications developed with PCIS-DASK are compatible across Windows 98, Windows NT and Windows 2000. The developing environment can be VB, VC++, Delphi, BC5, or any Windows programming language that allows calls to a DLL. The user's guide and function reference manual of PCIS-DASK are in the CD. Please refer the PDF manual files under \\Manual_PDF\Software\PCIS-DASK
- PCIS-DASK/X: Includes device drivers and shared library for Linux. The developing environment can be Gnu C/C++ or any programming language that allows linking to a shared library. The user's guide and function reference manual of PCIS-DASK/X are in the CD. (\Manual_PDF\Software\PCIS-DASK-X.)

The above software drivers are shipped with the board. Please refer to the "Software Installation Guide" for installation procedures.

1.4.2 PCIS-LVIEW: LabVIEW[®] Driver

PCIS-LVIEW contains the VIs, which are used to interface with NI's LabVIEW® software package. The PCIS-LVIEW supports Windows 95/98/NT/2000. The LabVIEW® drivers is shipped free with the board. You can install and use them without a license. For more information about PCIS-LVIEW. please in CD. refer the user's auide the to (\\Manual_PDF\Software\PCIS-LVIEW)

1.4.3 DAQBench[™]: ActiveX Controls

We suggest customers who are familiar with ActiveX controls and VB/VC++ programming use the DAQBenchTM ActiveX Control component library for developing applications. The DAQBenchTM is designed under Windows NT/98. For more information about DAQBench, please refer to the user's guide in the CD. (\\Manual_PDF\Software\DAQBench\DAQBench Manual.PDF).

2

Installation

This chapter describes how to install the 9116 series cards. The contents of the package and unpacking information that you should be aware of are described first.

The 9116 series cards perform an automatic configuration of the IRQ, port address, and BIOS address. You do not need to set these configurations, as you would do in ISA form factor DAS cards. Automatic configuration allows your system to operate more reliable and safe.

2.1 What You Have

In addition to this *User's Guide*, the package should also include the following items:

- cPCI-9116 or cPCI-9116R with rear I/O adaptor Analog input Data Acquisition Card
- ADLINK All-in-one Compact Disc
- Software Installation Guide

If any of these items are missing or damaged, contact the dealer from whom you purchased the product. Save the shipping materials and carton in case you want to ship or store the product in the future.

2.2 Unpacking

The card contains electro-static sensitive components that can be easily be damaged by static electricity.

Therefore, the card should be handled on a grounded anti-static mat. The operator should be wearing an anti-static wristband, grounded at the same point as the anti-static mat.

Inspect the card module carton for obvious damages. Shipping and handling may cause damage to your module. Be sure there are no shipping and handling damages on the modules carton before continuing.

After opening the card module carton, extract the system module and place it only on a grounded anti-static surface with component side up.

Again, inspect the module for damages. Press down on all the socketed IC's to make sure that they are properly seated. Do this only with the module place on a firm flat surface.

Note: DO NOT APPLY POWER TO THE CARD IF IT HAS BEEN DAMAGED.

You are now ready to install your cPCI-9116/R.

2.3 cPCI-9116 and cPCI-9116R Layout

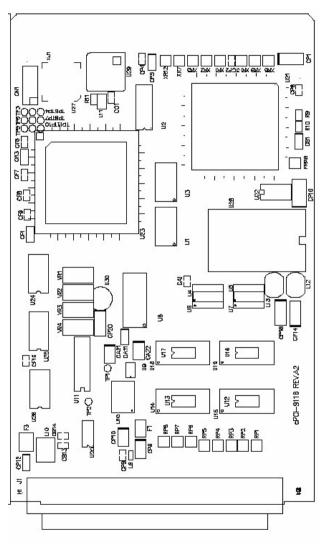
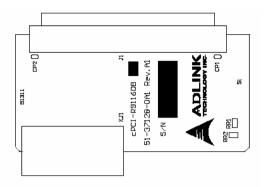



Figure 1: PCB Layout of the cPCI-9116

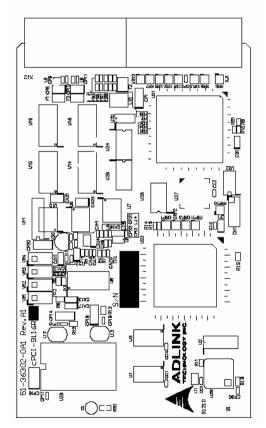


Figure 2: PCB Layout of cPCI-9116R and Rear I/O adaptor

2.4 PCI Configuration

1. Plug and Play:

As a plug and play component, the board requests an interrupt number via a system call. The system BIOS responds with an interrupt assignment based on the board information and on known system parameters. These system parameters are determined by the installed drivers and the hardware load seen by the system.

2. Configuration:

The board configuration is done on a board-by-board basis for all PCI form factor boards on your system. Because configuration is controlled by the system and software, so there is no jumpers for base-address, DMA, and interrupt IRQ need to be set by the user.

The configuration is subject to change with every boot of the system as new boards are added or boards are removed. So, there is no idea what's going on to be installed.

3. Trouble shooting:

If your system doesn't boot or if you experience erratic operation with your PCI board in place, it's likely caused by an interrupt conflict (perhaps because you incorrectly configured the BIOS setup). In general, the solution, once you determine it is not a simple oversight, is to consult the BIOS documentation that came with your system.

3

Signal Connections

This chapter describes the connectors of the 9116 series. The signal connections between the 9116 series cards and external devices are also outlined.

3.1 Connectors and Pin Assignment

The cPCI-9116 is equipped with one 100-pin SCSI-type connector (J1).

J1 is used for digital input/output, analog input, and timer/counter signals. The pin assignment for the connector is illustrated in the Figure 3.1.

With the REAR I/O adaptor specifically designed for the cPCI-9116R, the cPCI-9116R connector pin assignments are identical to that of the cPCI-9116. The red LED positioned on the front panel is used as a power indicator.

3.1.1 100-pin SCSI-type connector (J1)

L AIH0	J_CMMD Al0	1	51	AGND	
AIHO	AI0				
		2	52	AI32	AIL0
AIH1	Al1	3	53	AI33	AIL1
AIH2	Al2	4	54	AI34	AIL2
AIH3	AI3	5	55	AI35	AIL3
AIH4	AI4	6	56	AI36	AIL4
AIH5	AI5	7	57	AI37	AIL5
AIH6	AI6	8	58	AI38	AIL6
AIH7	AI7	9	59	AI39	AIL7
AIH8	AI8	10	60	AI40	AIL8
AIH9	AI9	11	61	AI41	AIL9
AIH10	AI10	12	62	AI42	AIL10
AIH11	AI11	13	63	AI43	AIL11
AIH12	AI12	14	64	AI44	AIL12
AIH13	AI13	15	65	AI45	AIL13
AIH14	AI14	16	66	AI46	AIL14
AIH15	AI15	17	67	AI47	AIL15
AIH16	AI16	18	68	AI48	AIL16
AIH17	AI17	19	69	AI49	AIL17
AIH18	AI18	20	70	AI50	AIL18
AIH19	AI19	21	71	AI51	AIL19
AIH20	AI20	22	72	AI52	AIL20
AIH21	AI21	23	73	AI53	AIL21
AIH22	AI22	24	74	AI54	AIL22
AIH23	AI23	25	75	AI55	AIL23
AIH24	AI24	26	76	AI56	AIL24
AIH25	AI25	27	77	AI57	AIL25
AIH26	AI26	28	78	AI58	AIL26
AIH27	AI27	29	79	AI59	AIL27
AIH28	AI28	30	80	AI60	AIL28
AIH29	AI29	31	81	AI61	AIL29
AIH30	AI30	32	82	AI62	AIL30
AIH31	AI31	33	83	AI63	AIL31
/	AGND	34	84	AGND	/
	+15V out	35	85	-15V out	
	N/C	36	86	N/C	
	DIO	37	87	DO0	
	DI1	38	88	DO1	
	DI2	39	89	DO2	
	DI3	40	90	DO3	
	DI4	41	91	DO4	
	DI5	42	92	DO5	
	DI6	43	93	DO6	
	DI7	44	94	DO7	
FxtT	imeBase	45	95	N/C	
EXT	ExtTrg	46	96	GP_TC_CLK	
S	SH_OUT	47	97	GP_TC_GATE	
	TC_OUT	48	98	GP_TC_UPDN	
51	+5V Out	49	99	+5V out	
	DGND	50	100	DGND	
	202			- 5.15	

3.1.2 Legend of J1

Signal Name	Definition
U_CMMD	User Common Mode
Aln	Analog Input Channel n (single-ended)
AlHn	Analog High Input Channel n (differential)
AlLn	Analog Low Input Channel n (differential)
DIn	Digital Input Signal Channel n
DOn	Digital Output Signal Channel n
ExtTimeBase	External Timebase Clock Input
ExtTrg	External Digital Trigger Signal
SSH_OUT	SSH Output Signal
GP_TC_CLK	General Purpose Timer/Counter Clock Input
GP_TC_GATE	General Purpose Timer/Counter Gate Input
GP_TC_UPDN	Purpose Timer/Counter Up/Down Control Input (0:down, 1:up)
GP_TC_OUT	General Purpose Timer/Counter Output
+5V OUT	+5V Output
+15V OUT	+15V Output
-15V OUT	-15V Output
AGND	Analog Ground
DGND	Digital Ground
N/C	No Connection

Table 1. Legend of J1 Connector

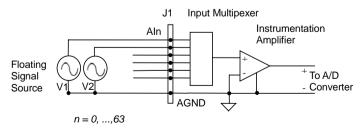
3.2 Analog Input Signal Connection

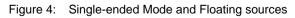
The 9116 series provides up to 64 single-ended or 32 differential analog input channels. You can set and fill the Channel Gain Queue to get the desired combination of the input signal types. The analog signals can be converted to digital value by the A/D converter. To avoid ground loops and to obtain accurate measurements from the A/D conversion, it is quite important to understand the signal source type and how to choose the analog input modes: Single-ended, Differential, or User Common Mode.

3.2.1 Types of signal sources

Floating Signal Sources

A floating signal source means it is not connected in any way to the buildings ground system. A device with an isolated output is a floating signal source, such as optical isolator outputs, transformer outputs, and thermocouples


Ground-Referenced Signal Sources


A ground-referenced signal means it is connected in some way to the buildings system. That is, the signal source is already connected to a common ground point with respect to the 9116 card, assuming that the computer is plugged into the same power system. Non- isolated outputs of instruments and devices that plug into the buildings power system are ground-referenced signal sources.

3.2.2 Input Configurations

Single-ended Mode

In single-ended mode, all input signals are connected to ground provided by the 9116 card. It is suitable for connections with floating signal sources. Figure 4 illustrates single-ended connection. Note that when more than two floating sources are connected, these sources will be referenced to the same common ground.

Differential input mode

The differential input mode provides two inputs that respond to signal voltage differences between them. If the signal source is ground- referenced, the differential mode can be used for common-mode noise rejection. Figure 5 shows the connection of ground-referenced signal sources under differential input mode.

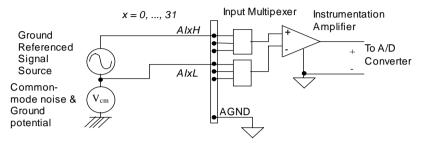


Figure 5: Ground-referenced source and differential input

Fig 6 shows how to connect a floating signal source to the 9116 card in differential input mode. For floating signal sources, a resistor is required on each channel to provide a bias return path. The resistor value should be about 100 times the equivalent source impedance. If the source impedance is less than 1000hms, simply connect the negative side of the signal to AGND as well as the negative input of the Instrumentation Amplifier, without any resistors. In differential input mode, less noise is coupled into the signal connections than in single-ended mode.

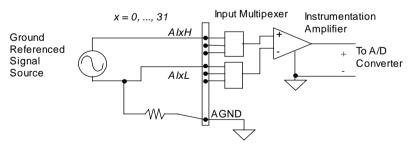


Figure 6: Floating source and differential input

User Common Mode (U_CMMD)

To measure ground-referenced signal sources, which are connected to the same ground point, you can connect the signals in a User-Common-Mode (U_CMMD) configuration. Fig 7 illustrates the connections. The signal local ground reference is connected to the negative input of the instrumentation Amplifier, and the common-mode ground potential to signal ground. The instrumentation amplifier will now reject the 9116 series ground.

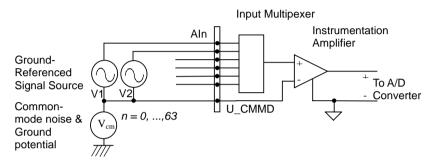


Figure 7: Ground-referenced source and User Common Mode connections

3.3 Digital I/O Connection

The 9116 series card provides 8 digital input and 8 digital output channels. The digital I/O signals are fully TTL/DTL compatible. The details of the digital I/O signal specification can be found in section 1.3.

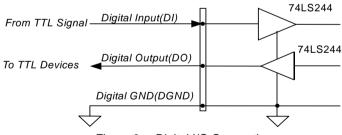


Figure 8: Digital I/O Connection

4

Registers

The descriptions of the registers and structure of the cPCI-9116 are outlined in this chapter. The information in this chapter will assist programmers, who wish to handle the card with low-level programs.

In addition, the low level programming syntax is introduced. This information can help beginners to operate the cPCI-9116 in the shortest possible time.

4.1 I/O Port Address

The 9116 series card functions as a 32-bit PCI master device to any master on the PCI bus. It supports burst transfer to memory space by using 32-bit data. All data read and write are based on 32-bit transactions. Table 2 shows the I/O address of each register with respect to the base address. The function of each register is also shown.

I/O Address	Read	Write
Base + 0x00	Scan Interval Counter	Scan Interval Counter
Base + 0x04	Sample Interval Counter	Sample Interval Counter
Base + 0x08	Scan Counter	Scan Counter
Base + 0x0C	DIV Counter	DIV Counter
Base + 0x10	Delay1 Counter	Delay1 Counter
Base + 0x14	M Counter	M Counter
Base + 0x18	GP Counter/Timer 0	GP Counter/Timer 0
Base + 0x1C	Х	Х
Base + 0x20	Х	GP Counter/Timer Control Reg
Base + 0x24	A/D FIFO Data Reg	Config. Channel Gain Queue Reg
Base + 0x28	A/D and FIFO Status Reg.	A/D and FIFO Control Reg.
Base + 0x2C	Х	Х
Base + 0x30	Digital IN Reg.(Dout)	Digital OUT Reg.
Base + 0x34	Х	A/D Trigger Mode Reg.
Base + 0x38	Interrupt Reason Reg.	Interrupt Control Reg.

Table 2. I/O Port Address

4.2 Internal Timer/Counter Register

The 9116 series card basically has 6 counters, which are responsible for the scan timing of the analog input data acquisition. The 6 counters occupy 6 I/O address locations in the 9116 card as shown below.

Address: BASE + 0 ~ BASE + 14

Attribute: read / write

Data	Format:
------	---------

Base + 0x00	Scan Interval Counter Register (R/W) 24bit
Base + 0x04	Sample Interval Counter Register (R/W) 16bit
Base + 0x08	Scan Counter Register (R/W) 24bit
Base + 0x0C	DIV Counter Register (R/W) 9bit
Base + 0x10	Delay1 Counter Register (R/W) 16bit
Base + 0x14	M Counter Register (R/W) 16bit

Table 3. Timer/Counter Register Address

- SI_counter: Scan Interval counter
- SI2_counter: Sample Interval counter
- SC_counter: total Scan Count counter
- DIV_counter: specify the number of samples per scan
- DLY1_counter: Delay Interval counter (only used in delay trigger mode)

M_counter: specify the number of scans before a trigger (only used in pre-trigger and middle-trigger modes)

4.3 General Purpose Timer/Counter Register

One 16-bit, general-purpose timer/counter exists in the 9116 series card. Writing to this register loads the initial count value into the general-purpose timer/counter. Reading from this register feedbacks the current count value of the general-purpose timer/counter

Address: BASE + 0x18

Attribute: write / read

Data Format:

Bit	7	6	5	4	3	2	1	0
	GP7	GP6	GP5	GP4	GP3	GP2	GP1	GP0
Bit	15	14	13	12	11	10	9	8
	GP15	GP14	GP13	GP12	GP11	GP10	GP9	GP8
Bit	23	22	21	20	19	18	17	16
Bit	31	30	29	28	27	26	25	24

Table 4. General Purpose Timer/Counter Register

4.4 General Purpose Timer/Counter Control Register

Address: BASE + 0x20

Attribute: write only

Data Format:

Bit	7	6	5	4	3	2	1	0
	Counter en	Up Down	Up Down src	Gate_sr c	Clk_src		MODE1	MODE0
Bit	15	14	13	12	11	10	9	8
Bit	23	22	21	20	19	18	17	16
Bit	31	30	29	28	27	26	25	24

Table 5. General Purpose Timer/Counter Control Register

Counter en (bit7): GPTC0 count enable

1: enable GPTC0

0: disable GPTC0

- UpDown (bit6): GPTC0's up/down pin software control
 - 1: Up counter
 - 0: Down counter
- UpDown src(bit5): GPTC0's up/down pin selection bit
 - 1: External input (Pin 98)
 - 0: Software Control
- Gate_src (bit4): GPTC0's gate source
 - 1: External Input (Pin 97)
 - 0: gate controlled by setting the enable (bit7)
- Clk_src (bit3): GPTC0's clock source
 - 1: External Input (Pin 96)
 - 0: Internal Timebase

MODE1~MODE0 (bit1 ~ bit0): GPTC0's Mode selection

MODE1	MODE0	Description		
0	0	General Counter		
0	1	Pulse Generation		
1	0	Х		
1	1	Х		

Table 6. GPTC0's Mode selection

4.5 A/D Data Registers

The digital converted data is 16-bits and is stored into 32-bit registers.

Address: BASE +24

Attribute: read

Data Format:

Bit	7	6	5	4	3	2	1	0
	AD7	AD6	AD5	AD4	AD3	AD2	AD1	AD0
Bit	15	14	13	12	11	10	9	8
	AD15	AD14	AD13	AD12	AD11	AD10	AD9	AD8
Bit	23	22	21	20	19	18	17	16
Bit	31	30	29	28	27	26	25	24

Table 7. A/D Data Registers

AD15 ~ AD0: Analog to digital data. AD15 is the Most Significant Bit (MSB). AD0 is the Least Significant Bit (LSB).

4.6 Channel Gain Queue Register

This register is used to fill the Channel Gain Queue. We recommend users use our call function to avoid any possible errors from these settings.

Address: BASE + 0x24

Attribute: write

Data Format:

Bit	7	6	5	4	3	2	1	0
	EN3	EN2	EN1	EN0	HL_sel	UNIP	DIFF	U_CMMD
Bit	15	14	13	12	11	10	9	8
			Gain1	Gain0	CH3	CH2	CH1	CH0
Bit	23	22	21	20	19	18	17	16
Bit	31	30	29	28	27	26	25	24

Table 8. Channel Gain Queue Register

CH3 ~ CH0 (bit11~ bit8):

Internal A/D Channel selection bits

EN3 ~ EN0 (bit7~ bit4): Multiplexer Enable selection bits

Gain1~Gain0 (bit13~bit12): Gain selection bits

Gain1	Gain0	Gain		
0	0	1		
0	1	2		
1	0	4		
1	1	8		

Table 9. Gain Selection Bits

- HL_sel(bit3): >31 channel selection (single ended)
 - 1: when channel number is larger than 31
 - 0: when channel number is smaller than or equal to 31
- DIFF(bit1): Analog Input Signals Type
 - 1: Differential
 - 0: Single ended
- UNIP(bit2): Analog Input Signals Polarity
 - 1: Unipolar
 - 0: Bipolar
- U_CMMD(bit0): User Defined Common Mode Selection
 - 1: User Defined Common Mode (Pin 1)
 - 0: Local Ground of 9116 series

4.7 A/D & FIFO Control Register

Address: BASE + 28

Attribute: Write

Data Format:

Bit	7	6	5	4	3	2	1	0
	SC_dis	Clear Channel Gain Queue	Set done	Clear DFIFO	Clear Trg_det	Clear SC_TC	Clear ADOR	Clear ADOS
Bit	15	14	13	12	11	10	9	8
								DMA
Bit	23	22	21	20	19	18	17	16
Bit	31	30	29	28	27	26	25	24

Table 10. A/D & FIFO Control Register

DMA (Bit8): Write Only. Set for DMA transfer

SC_dis (Bit7): Write Only. Set to disable the SC counter

Clear Channel Gain Queue (Bit6): Write Only

Clear the Channel Gain Queue

0: no effect on the Channel Gain Queue

1: clear the Channel Gain Queue

Set done (Bit5): Write Only

0: indicate the Channel Gain Queue is not ready

1: indicate the Channel Gain Queue is OK

Clear DFIFO(Bit4) : Write Only

Clear the Data FIFO:

0: no effect on Data FIFO

1: clear the Data FIFO

Clear Trg_det(Bit3) : Write 1 to clear

Write 1 to clear the trigger status:

0: no effect

1: clear trigger detect status

Clear SC_TC(Bit2) : Write 1 to clear

Write 1 to clear Scan Counter Terminal Count status

0: no effect

1: clear the SC_TC status

Clear ADOR(Bit1) : Write 1 to clear

Write 1 to clear the A/D Overrun Status

0: no effect

1: clear the A/D Overrun status

Clear ADOS(Bit0) : Write 1 to clear

Write 1 to clear the A/D Over Speed Status:

0: no effect

1: clear the A/D Over-Speed status

4.8 A/D & FIFO Status Register

Address: BASE + 28

Attribute: read

Data Format:

Bit	7	6	5	4	3	2	1	0
	ACQ	Full	HFull	Empty	Trg_det	SC_TC	ADOR	ADOS
Bit	15	14	13	12	11	10	9	8
Bit	23	22	21	20	19	18	17	16
Bit	31	30	29	28	27	26	25	24

Table 11. A/D & FIFO Status Register

- ACQ (Bit7): Read Only, set when acquisition is in progress.
- Full (Bit6): Read Only A/D FIFO Full status (Fatal Error!) 0: FIFO Full

1: FIFO not Full

- HFull(Bit5): Read only A/D FIFO Half Full status
 - 0: FIFO Half Full
 - 1: FIFO not Half Full
- Empty (Bit4): Read Only A/D FIFO Empty status 0: FIFO Empty
 - 1: FIFO not Empty
- Trg_det (Bit3): Read/ Write 1 to clear External Digital Trigger Status
 - 1: External Digital Trigger
 - 0: No External Digital Trigger
- SC_TC(Bit2): Read/ Write 1 to clear Scan Counter Terminal Count Status
 - 1: Scan Counter counts to 0
 - 0: Scan Counter not completed
- ADOR(Bit1): Read/ Write 1 to clear A/D Overrun Status (Fatal Error !)
 - 1: A/D Overrun
 - 0: A/D not Overrun
- ADOS(Bit0): Read/ Write 1 to clear A/D Over Speed Status (Warning !)
 - 1: A/D Over Speed
 - 0: A/D not Over Speed

4.9 Digital I/O register

There are 8 digital input and 8 digital output channels provided by the 9116 series cards. The address Base + 30 is used to access digital inputs and control digital outputs.

Address: BASE +30

Attribute: read

Data Format:

Bit	7	6	5	4	3	2	1	0
	DI7	DI6	DI5	DI4	DI3	DI2	DI1	DI0
Bit	15	14	13	12	11	10	9	8
	DO7	DO6	DO5	DO4	DO3	DO2	DO1	DO0
Bit	23	22	21	20	19	18	17	16
Bit	31	30	29	28	27	26	25	24

Table 12. Digital I/O register (Read)

Address: BASE + 30

Attribute: write

Data Format:

Bit	7	6	5	4	3	2	1	0
	DO7	DO6	DO5	DO4	DO3	DO2	DO1	DO0
Bit	15	14	13	12	11	10	9	8
Bit	23	22	21	20	19	18	17	16
Bit	31	30	29	28	27	26	25	24

Table 13. Digital I/O register (Write)

4.10 A/D Trigger Mode Register

Address: BASE + 0x34

Attribute: write only

Data Format:

Bit	7	6	5	4	3	2	1	0
	Retrig	DLYSRC	Time Base	TrgP	MODE2	MODE1	MODE0	
Bit	15	14	13	12	11	10	9	8
						softconv	ACQ_EN	M_enable
Bit	23	22	21	20	19	18	17	16
Bit	31	30	29	28	27	26	25	24

Table 14. A/D Trigger Mode Register

- softconv (bit10): ADC direct conversion control
 - 1: generate 1 convert pulse
 - 0: no effect
- ACQ_EN (bit9): Acquisition enable bit
 - 1: enable the acquisition timing
 - 0: disable the acquisition timing
- M_enable (bit8): M counter enable bit
 - 1: ignore trigger signals before M counter reaches 0
 - 0: accept the trigger signal anytime
- Retrig (bit7): Re-triggerability in an acquisition
 - 1: Re-triggerable
 - 0: trigger only once
- DLY SRC (bit6): Delay time unit in delay trigger mode
 - 1: delay in sampling rate (SI2)
 - 0: delay in Timebase

TimeBase(bit5): The Timebase Selection of 9116 series

- 1: External Timebase
- 0: Internal Timebase (24 MHz)

TrgP (bit4): The Trigger polarity selection bit

- 1: Negative Edge Trigger
- 0: Positive Edge Trigger

MODE2 ~ 0(bit3 ~ bit1): Trigger Mode Selection Bits

MODE2	MODE1	MODE0	Description
0	0	0	Software Trigger
0	0	1	Post Trigger
0	1	0	Delay Trigger
0	1	1	Pre Trigger
1	0	0	Middle Trigger

Table 15. Trigger Mode Selection Bits

4.11 Interrupt Control Register

Address: BASE + 0x38

Attribute: write

Data Format:

Bit	7	6	5	4	3	2	1	0
				Clr_Timer	Clr_STTC	Clr_Hfull	Clr_DTrg	Clr_EOC
Bit	15	14	13	12	11	10	9	8
				Timer_en	STTC_en	Hfull_en	DTrg_en	EOC_en
Bit	23	22	21	20	19	18	17	16
Bit	31	30	29	28	27	26	25	24

Table 16. Interrupt Control Register

Timer_en (bit12): General Purpose Timer Interrupt Enable Control

- 1: Enable
- 0: Disable

SCTC_en (bit11):	Trigger Complete Interrupt Enable Control
	1: Enable
	0: Disable
Hfull_en (bit10):	A/D FIFO Half Full Interrupt Enable Control
	1: Enable
	0: Disable
DTrg_en (bit9):	External Digital Trigger Interrupt Enable Control
	1: Enable
	0: Disable
EOC_en (bit8):	End of conversion Interrupt Enable Control
	1: Enable
	0: Disable
Clr_Timer (bit4):	write 1 to clear the GPTC Interrupt status
	1: clear interrupt from the GPTC
	0: no effect
Clr_SCTC (bit3):	write 1 to clear the SCTC Interrupt
	1: clear the interrupt on terminal count of the Scan counter
	0: no effect
Clr_HFull (bit2):	write 1 to clear the data FIFO half full interrupt
	1: clear the interrupt on the data FIFO half full status
	0: no effect
Clr_DTrg (bit1):	write 1 to clear the Digital Trigger Interrupt
	1: clear the interrupt when trigger happens
	0: no effect
Clr_EOC (bit0):	write 1 to clear the End of Conversion Interrupt
	1: clear the interrupt when EOC
	0: no effect

4.12 Interrupt Status Register

Address: BASE + 0x38

Attribute: read

Data Format:

Bit	7	6	5	4	3	2	1	0
				Timer	STTC	Hfull	DTrg	EOC
Bit	15	14	13	12	11	10	9	8
Bit	23	22	21	20	19	18	17	16
Bit	31	30	29	28	27	26	25	24

Table 17. Interrupt Status Register

Timer (bit4):	GPTC generated Interrupt status
	1: Interrupt Occurs
	0: Interrupt not Occur
SCTC(bit3):	Scan Counter reach Terminal Count Interrupt status
	1: Interrupt Occurs
	0: Interrupt not Occur
HFull (bit2):	data FIFO Half Full Interrupt
	1: Interrupt Occurs
	0: Interrupt not Occur
DTrg (bit1):	Digital Trigger Interrupt status
	1: Interrupt Occur
	0: Interrupt not Occur
EOC (bit0):	End of Conversion Interrupt status
	1: Interrupt Occurs
	0: Interrupt not Occur

5

Operation Theory

The operation theory of the functions on the 9116 series is described in this chapter. The functions include the A/D conversion, Digital I/O and General Purpose Counter / Timer. The operation theory can help you better understand how to configure and program the 9116 series card.

5.1 A/D Conversion

5.1.1 A/D Conversion Procedure

When using an A/D converter, users should beware of the properties of the signal to be measured. Users can decide which channel to use and where to connect the signals to the card. Please refer to 3.2 for signal connections. In addition, users should define and control the A/D signal configurations, including channels, gains, and A/D signal types.

The A/D acquisition is initiated by a trigger source; users must decide how to trigger the A/D conversion. The data acquisition will start when a trigger condition is met.

After the end of the A/D conversion, the A/D data is buffered in a Data FIFO. The A/D data is then transferred into PC's memory for further processing.

There are two acquisition modes: Software Polling and Scan acquisition. They will be described separately in the following section, including the timing, signal source control, trigger mode, and transfer method.

5.1.2 Software conversion with polling data transfer acquisition mode (Software Polling)

This is the easiest way to acquire a single A/D data. The A/D converter starts a conversion when the user writes 1 into bit10 of the A/D trigger mode register (BASE+34). After the software initializes the A/D conversion, the software polls the FIFO *Empty* status (bit4) in the A/D & FIFO Status register (BASE+28) until it changes to active low logic.

If the Data FIFO is empty before an A/D conversion starts, the *Empty* bit will be high. After the A/D conversion is completed, the A/D data is written to the Data FIFO immediately, thus the *Empty* becomes low. You can consider the *Empty* bit as a flag to indicate the converted data ready status. That is, a low *Empty* bit meaning the data is ready. The A/D data is now ready to be transferred to host memory from the FIFO.

This method is suitable for applications that needs to process AD data in real time. Under this mode, the timing of the A/D conversion is fully controlled by the software. However, it is difficult to control a fixed A/D conversion rate unless another timer interrupt service routine is used to generate a fixed conversion rate trigger.

ADLINK's software driver provides an integral function to acquire a single data (That is, it will start an A/D conversion, then poll the *Empty* flag and read the data back when the data is ready). We also provide individual functions to allow users to start an A/D conversion only. Users must read it back from the A/D data register (BASE+24) by themselves. This method makes it possible to read A/D converted data without polling. The conversion and acquisition time of the ADC does not exceed 4 μ s. Hence, after software conversion, the software need only wait for a maximum of 4 μ s to read the A/D Data Register without polling.

5.1.2.1 Specifying Channels, Gains, and input configurations in the Channel Gain Queue

In both Software Polling and programmable scan acquisition mode, the channel, gain, and input configuration (single-end, differential, and U_CMMD), where you want to acquire samples from, can be specified in the **Channel Gain Queue**. You can set the channel number in the Channel Gain Queue in any order. Therefore, you can control the channel order from which data is acquired with different gain and input configuration for each channel. The maximum number of entries you can set is 512 channels. The channel order of acquisition is the same as the order you set in the Channel Gain Queue. When the specified channels are sampled from the beginning to the end in the Channel Gain Queue, the channels in the Channel Gain Queue will be sampled again until the specified number of samples has been acquired.

5.1.3 Programmable scan acquisition mode

5.1.3.1 Scan Timing and Procedure

It's recommended that this mode be used, if your application needs a fixed and precise A/D sampling rate. You can accurately program the period between conversions of each individual channel in the scan and the period between conversions of the entire scan. There are 4 counters, which need to be specified:

SI_counter(24 bit):	Specify the	e S can I	nterval =	SI_counter /	Timebase	
SI2_counter(16 bit):	Specify the data S ampling Interva SI2_counter/Timebase				Interval	=
SC_counter(24 bit):	Specify Sc	an C ou	nt Count	er after trigger		
DIV_counter(9 bit):	Specify the	e numbe	er of sam	ples per scan		

The acquisition timing and the meaning of the 4 counters are illustrated in figure 9.

Timebase clock source

In scan acquisition mode, all the A/D conversions start on the output of counters, which use **Timebase** as the clock source. With the software you can specify the Timebase to be either an internal clock source (on board 24MHz) or an external clock input on pin 45 of J1. The external clock is useful when you want to acquire data at rates not available with the internal A/D sample clock. The external clock source must generate TTL-compatible continuous clocks, and the maximum frequency is 24MHz while the minimum is 1MHz.

3 Scans, 4 Samples per scan (SC_Counter=3, DIV_Counter=4)

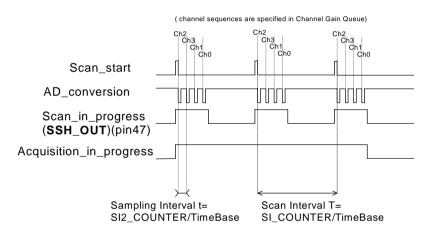


Figure 9: Scan Timing

In the scan acquisition mode, the channel, gain, and input configurations (single-end, differential, or U_CMMD) must be specified in the hardware **Channel Gain Queue**, please refer to 5.1.3.2 for more details.

There are 5 trigger modes to start the scan acquisition, please refer to 5.1.3.3 details. The data transfer modes will be discussed in 5.1.3.4.

Note:

- 1. The maximum A/D sampling rate is 250kHz. Therefore, SI2_counter can't be smaller than 96 while using the internal Timebase.
- 2. The SI_counter is a 24-bit counter and the SI2_counter is a 16-bit counter. Therefore, the maximum scan interval while using the internal Timebase = $2^{24}/24M$ s = 0.699s, and the maximum sampling interval between 2 channels while using the internal Timebase = $2^{16}/24M$ s = 2.73ms.
- The scan interval can't be smaller than the product of the data sampling interval and the DIV_counter value. The relationship can be represented as: SI_counter>=SI2_counter*DIV_counter.

Scan with SSH

You can send the SSH_OUT signal on pin 47 of J1 to an external S&H circuits to sample and hold all signals if you want to simultaneously sample all channels in a scan, as illustrated in fig 9.

Note: The 'SSH_OUT' signal is sent to external S&H circuits to hold the analog signal. Users must implement external S&H circuits on their own to carry out the S&H function. There are no on-board S&H circuits.

5.1.3.2 Specifying Channels, Gains, and input configurations in the Channel Gain Queue

Like software polling acquisition mode, the channel, gain, and input configurations (single-end, differential, and U_CMMD) must also be specified in the hardware **Channel Gain Queue** under scan acquisition mode. Please refer to 5.1.2.1 for details. Note that in scan acquisition mode, the number of entries in the Channel Gain Queue is normally equivalent to the value of DIV_counter (that is, the numbers of samples per scan).

Example:

Set

 $SI2_counter = 240$

 $SI_counter = 960$

 $SC_counter = 3$

 $DIV_counter = 4$

Timebase = Internal clock source

Channel entries in the Channel Gain Queue: ch1, ch2, ch0, ch2

Then

Acquisition sequence of channels: 1, 2, 0, 2, 1, 2, 0, 2, 1, 2, 0, 2.

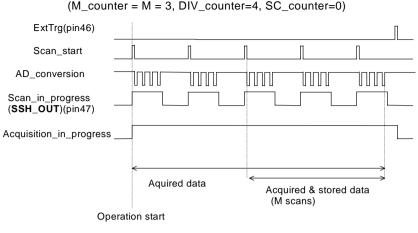
Sampling Interval = 240/24M s = 10 us

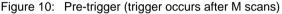
Scan Interval = 960/24M s = 40 us

Equivalent sampling rate of ch0, ch1: 25kHz

Equivalent sampling rate of ch2: 50kHz

5.1.3.3 Trigger Modes


There are 5 trigger modes (software-trigger, pre-trigger, post-trigger, middle-trigger, and delay-trigger) to start the data acquisition described in 5.3.1.1. All but software trigger are external digital triggers. An external digital trigger event occurs when a rising edge or a falling edge (software programmable) of a digital signal is detected on pin 46 of J1. They are described as follows.


Software-Trigger Acquisition

This trigger mode does not need any external trigger source. The data acquisition starts right after you execute the specified function calls to begin the operation. The scan timing is the same as fig 9. The total acquired data length = DIV_counter*SC_counter.

Pre-Trigger Acquisition

Use pre-trigger acquisition in applications where you want to collect data before an external trigger event. The A/D starts when you execute the specified function calls to begin the operation, and it stops when the external trigger event occurs. Users must program the value M in the **M_counter** (16bit) to specify the amount of stored scans of data before the trigger event. If the external trigger occurs after M scans of data are converted, the program only stores the last M scans of data, as illustrated in fig 10, where M_counter = M = 3, DIV_counter = 4, SC_counter = 0. The total stored amount of data = DIV_counter *M_counter = 12.

Note: If an external trigger event occurs when a scan is in progress, the data acquisition won't stop until this scan completes, and the stored M scans of data include the last scan. Therefore, the first stored data will always be the first channel entry of a scan (that is, the first channel entry in the Channel Gain Queue if the number of entries in the Channel Gain Queue is equivalent to the value of DIV_counter), no matter when the trigger signal occurs, as illustrated in Fig 11, where M_counter = M =3, DIV_counter = 4, SC_counter = 0.

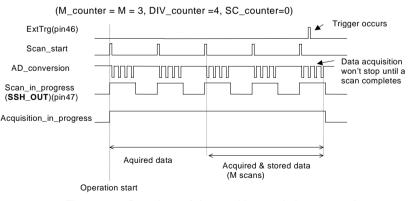
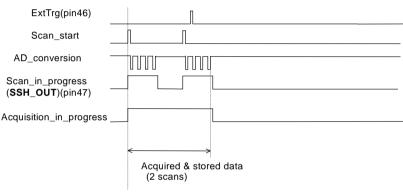
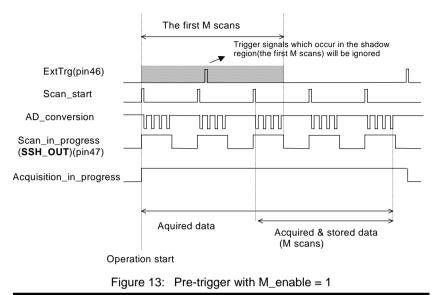
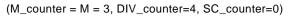
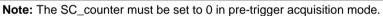



Figure 11: Pre-trigger (trigger with scan is in progress)

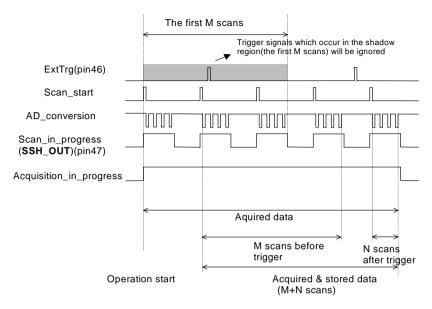

When an external trigger signal occurs before the first M scans of data are converted, the amount of stored data could be fewer than the originally specified amount of DIV_counter * M_counter, as illustrated in fig 12. This situation can be avoided by setting **M_enable**. If **M_enable** is set to 1, the trigger signal will be ignored until the first M scans of data are converted, and it assures user of obtaining M scans of data under pre-trigger mode, as illustrated in fig 13. However, if **M_enable** is set to 0, the trigger signal will be accepted in any time, as illustrated in fig 12. Note that the total amount of stored data is still always a multiple of DIV_counter (number of samples per scan) because the data acquisition won't stop until a scan is completed.





Operation start

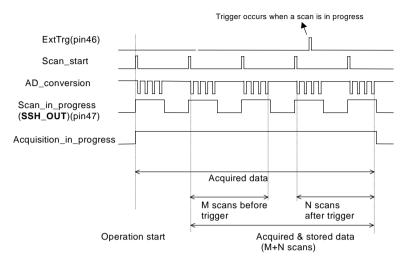
Figure 12: Pre-trigger with M_enable = 0 (trigger occurs before M scans)



Middle-Trigger Acquisition

Use middle-trigger acquisition in applications where you want to collect data before and after an external trigger event. The number of scans stored before the trigger is specified in M_counter, while the number of scans after the trigger is specified in SC_counter.

Like pre-trigger mode, the number of stored data can be less than the specified amount of data (DIV_counter *(M_counter+SC_counter)) if an external trigger occurs before M scans of data is converted. The M_enable bit in middle-trigger mode takes the same effect as in pre-trigger mode. If M_enable is set to 1, the tigger signal will be ignored until the first M scans of data are converted, this assures user of obtaining M+N scans of data under middle-trigger mode. However, if M_enable is set to 0, the trigger signal will be accepted at any time. Fig 14 shows the acquisition timing with M_enable=1.

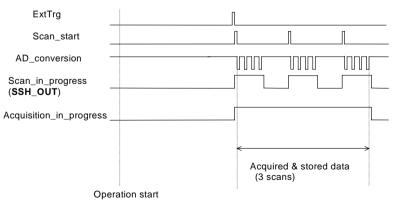


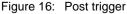
(M_Counter=M=3, DIV_Counter=4, SC_Counter=N=1)

Figure 14: Middle trigger with M_enable = 1

If an external trigger event occurs when a scan is in progress, the stored N scans of data would include this scan. And the first stored data will always be the first channel entry of a scan, as illustrated in Fig 15.

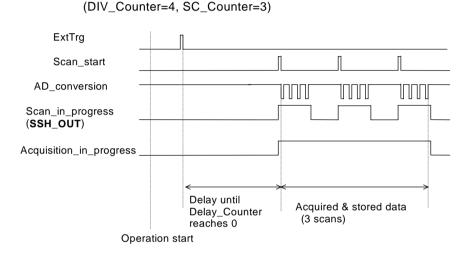
(M_Counter=M=2, DIV_Counter=4, SC_Counter=N=2)





Post-Trigger Acquisition

Use post-trigger acquisition in applications where you want to collect data after an external trigger event. The number of scans after the trigger is specified in SC_counter, as illustrated in fig 16. The total acquired data length = DIV_counter *SC_counter.


(DIV_Counter=4, SC_Counter=3)

Delay Trigger Acquisition

Use delay trigger acquisition in applications where you want to delay the data collection after the occurrence of a specified trigger event. The delay time is controlled by the value, which is pre-loaded in the **Delay_counter** (16bit). The counter counts down on the rising edge of Delay_counter clock source after the trigger condition is met. The clock source can be software programmed either Timebase clock (24MHz) or A/D sampling clock (Timebase /SI2_counter). When the count reaches 0, the counter stops and 9116 card starts to acquire data. The total acquired data length = DIV_counter * SC_counter.

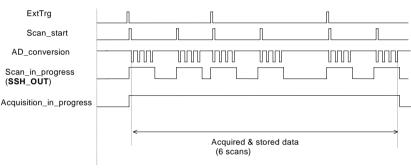


Figure 17:	Delay trigger

Note: When the Delay_counter clock source is set to Timebase, the maximum
delay time = $2^{16}/24M$ s = 2.73ms, and when the source is set to A/D
sampling clock, the maximum delay time = $2^{16} * SI2$ _counter / 24M).

Post-Trigger or Delay-trigger Acquisition with re-trigger

Use post-trigger or delay-trigger acquisition with re-trigger function in applications where you want to collect data after several external trigger events. The number of scans after each trigger is specified in SC_counter, and users could program **Retrig_no** to specify the number of re-triggers. Fig 18 illustrates an example. In this example, 2 scans of data is acquired after the first trigger signal, then the board waits for the re-trigger signal (re-trigger signals which occur before the first 2 scans of data is acquired will be ignored). When the re-trigger signal occurs, the board scans 2 more scans of data. The process repeats until the specified amount of re-trigger signals are detected. The total acquired data length = DIV_counter * SC_counter * Retrig_no.

(DIV_Counter=4, SC_Counter=2, retrig_no=3)

Operation start

Figure 18: Post trigger with re-trigger

5.1.4 A/D Data Transfer Modes

After the end of the A/D conversion, A/D data are buffered into the **Data FIFO** memory. The FIFO size on the 9116 series card is 1024 (1K) words. If the sampling rate is 10 KHz, the FIFO can buffer 102.4 ms of analog signal. After the FIFO is full, any data after this time will be lost.

The data must be transferred to the host memory after the data is ready and before the FIFO is full. In scan acquisition mode, there are 3 data transfer modes that can be used. They are described below.

EOC Interrupt Transfer

The 9116 series card provides traditional hardware End-Of-Conversion (EOC) interrupt capability. Under this mode, an interrupt signal is generated when the A/D conversion has ended and the data is ready to be read into the Data FIFO. The hardware interrupt will be asserted and its corresponding ISR (Interrupt Service Routine) will be invoked and executed. The ISR program can read the converted data. This method is suitable for data processing applications under real-time and fixed sampling rate.

FIFO Half-Full Interrupt Transfer

Sometimes, the application does not need real-time processing, cause the foreground program is busy polling the FIFO data. The FIFO half-full interrupt transfer mode is useful for the situation mentioned above.

Under this mode, an interrupt signal is generated when FIFO becomes half-full. It means that there are 512 words of data in the FIFO ready for transfer. The ISR can read the whole block of data when the interrupt occurs. A "block is 512 words long.

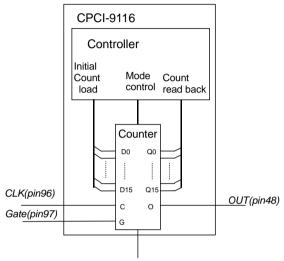
Note: In the current version, EOC & FIFO half-full interrupt transfer mode doesn't support pre-trigger and middle-trigger mode data acquisition. Users must use DMA transfer to work with pre-trigger or middle-trigger data acquisition.

DMA Transfer

PCI bus-mastering DMA is necessary for high speed DAQ in order to utilize the maximum PCI bandwidth. The bus-mastering controller, which is built-in into the AMCC-5933 PCI controller, controls the PCI bus when it becomes the master on the bus. Bus mastering reduces the size of the on-board memory and reduces the CPU loading because data is directly transferred to the computer's memory without host CPU intervention.

Bus-mastering DMA provides the fastest data transfer rates on PCI-bus. Once the analog input operation starts, control returns to your program. The hardware temporarily stores the acquired data in the onboard Data FIFO and then transfers the data to a user-defined DMA buffer memory in the computer. Note that even when the acquired data length is less than the Data FIFO, the AD data will not held in the Data FIFO but directly transferred to the host memory by bus-mastering DMA.

The DMA transfer mode is very complex to program. We recommend using a high-level program library to configure this card. If you want to program the software, which can handle DMA bus master data transfer, please refer to information about the PCI controller at www.amcc.com.


Note: In DMA transfer mode, the maximum acquired data length in one acquisition can be up to 64M bytes (32M samples), which is the limit of the PCI controller. However, the memory that you allocate for data transfer must be continuous.

5.2 Digital Input and Output

To program the digital I/O operation is fairly straightforward. The digital input (DI) operation is to read data from its corresponding registers, and the digital output (DO) operation is to write data to its corresponding registers. The digital I/O registers' formats are shown in section 4.9. The DO can be read back when reading the DI port. Note that the DIO data channel can only be read or written to, in the form of 16-bit blocks. It is impossible to access individual bits.

5.3 General Purpose Timer/Counter Operation

An independent 16-bit up/down timer/counter is designed in the FPGA for user applications. Fig 19 shows a simplified model of the timer/counter on the 9116 series card. It has the following features:

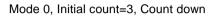

UP/DOWN(pin98)

Figure 19: General-purpose Timer/Counter model

- Count up/Count down controlled by hardware or software (low or 0: counts down, high or 1: counts up)
- Programmable counter CLK source selection (Internal 24MHz or External CLK input up to 20MHz)
- Programmable Gate selection (Internal or External. For Internal control, you can disable counting only by software. For External gate control, either software or setting Gate = low on pin 97 of J1 disables the counting)
- Initial Count can be loaded from software
- Current count value can be read with software without affecting circuit operation
- Two programmable timer modes are provided:

Mode 0: Interrupt on Terminal Count

Mode 0 is typically used for event counting, as illustrated in fig 20. After the initial count is written, OUT is initially low, and will remain low until the Counter counts to zero. OUT then goes high and will remain high until a new count is written into the Counter.

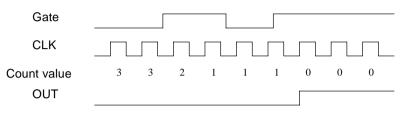
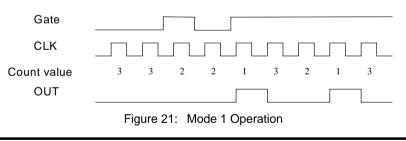



Figure 20: Mode 0 Operation

Mode 1: Rate Generator

This mode operates like a divide-by-N counter, as illustrated in fig 21. After the initial count is written, initially OUT is low. When the counter reaches 1, OUT goes high for one clock pulse. OUT then goes low again. The counter reloads the initial count and the process will be repeated.

mode 1, Initial count=3, Count down

Note: In Mode 1 the initial count value N must be larger than one.

6

C/C++ Library

This chapter describes the software library for operating this card. Only the functions in DOS library are described. Please refer to the PCIS-DASK function reference manual, which included in ADLINK CD, for the descriptions of the Windows 98/NT/2000 DLL functions.

The function prototypes and some useful constants are defined in the header files LIB directory (DOS).

6.1 Libraries Installation

Please refer to the "Software Installation Guide" for the detail information about how to install the software libraries for DOS or PCIS-DASK for Windows 98/NT/2000.

The device drivers and DLL functions of Windows 98/NT/2000 are included in the PCIS-DASK. Please refer the PCIS-DASK user's guide and function reference, which included in the ADLINK CD, for detailed programming information.

6.2 Programming Guide

6.2.1 Naming Convention

The functions of the NuDAQ PCI cards or NuIPC CompactPCI cards' software driver are using full-names to represent the functions' real meaning. The naming convention rules are:

In DOS Environment :

_{hardware_model}_{action_name}. e.g. _9116_initial().

6.2.2 Data Types

We defined some data type in 9116.h (DOS). These data types are used by NuDAQ Cards' library. We suggest that you use these data types in your application programs. The following table shows the data type names and their range.

Type Name	Description	Range
U8	8-bit ASCII character	0 to 255
l16	16-bit signed integer	-32768 to 32767
U16	16-bit unsigned integer	0 to 65535
132	32-bit signed integer	-2147483648 to 2147483647
U32	32-bit single-precision floating-point	0 to 4294967295
F32	32-bit single-precision floating-point	-3.402823E38 to 3.402823E38
F64	64-bit double-precision floating-point	-1.797683134862315E308 to 1.797683134862315E309
Boolean	Boolean logic value	TRUE, FALSE

6.2.3 Sample Programs List (DOS)

You can get sample programs once cPCI-9116 dos driver is installed. The following is the list of the files and it's description:

Description
Software polling with single-ended input
Software polling with differential input
Scan data acquisition with software trigger and EOC interrupt transfer
Scan data acquisition with software trigger and Half-Full interrupt transfer
Scan data acquisition with software trigger and DMA transfer
Scan data acquisition with pre-trigger, M_enable=1 and DMA transfer
Scan data acquisition with pre-trigger, M_enable=0 and DMA transfer
Scan data acquisition with middle-trigger, M_enable=1 and DMA transfer
Scan data acquisition with post-trigger and DMA transfer
Scan data acquisition with delay-trigger, re-trigger and DMA transfer
Continuous scan data acquisition with double buffered mode DMA transfer
DIO test
General purpose timer/counter mode0 operation
General purpose timer/counter mode1 operation

6.3 Initial functions

6.3.1 _9116_Initial

@ Description

This function is used to initialize the cPCI-9116. Each cPCI-9116 card must be initialized with this function before calling other functions is permitted.

@ Syntax

C/C++ (DOS)

int _9116_Initial(I16 card_number, U16 *op_base_address, U16 *pt_base_address, U16 *irq_no, U16 *pci_master);

@ Argument

card_number :	the card number of the cPCI-9116 to be initialized, totally 4 cards can be initialized, valid card numbers are CARD_1, CARD_2, CARD 3, CARD 4.
op_base_address :	the physical location of the S5933(PCI controller) operation Registers in I/O space.
pt_base_address :	the physical location of add-on registers in pass-through I/O space. (The base address used in CH4)
irq_no :	the interrupt IRQ level of your cPCI-9116 card, this available IRQ value is automatically assigned by the system BIOS.
pci_master :	BIOS enables or disables bus mastering in PCI Command Register

@ Return Code

ERR_NoError ERR_PCIBiosNotExist ERR_PCICardNotExist ERR_PCIIrqNotExist

6.3.2 _9116_AD_Clr_DFIFO

@ Description

This function is used to clear the A/D Data FIFO.

@ Syntax

C/C++ (DOS)

int _9116_AD_CIr_DFIFO(I16 card_number)

@ Argument

card_number : the card number of the cPCI-9116 to be initialized, totally 4 cards can be initialized, valid card numbers are CARD_1, CARD_2, CARD_3, CARD_4.

@ Return Code

6.4 DIO functions

6.4.1 _9116_DI

@ Description

This function is used to read data from the digital input port. There are 8 digital input channels on the cPCI_9116. All 8 channels can be accessed using this function.

@ Syntax

C/C++ (DOS)

int _9116_DI (I16 card_number, unsigned int far *data)

@ Argument

card_number:	the card number of the cPCI-9116 to be initialized, totally 4 cards can be initialized, valid card numbers are CARD_1, CARD_2, CARD_3, CARD_4
data:	8-bit data read from the digital input port.

@ Return Code

ERR_NoError, ERR_BoardNoInit

6.4.2 _9116_DO

@ Description

This function is used to write data to the digital output port. There are 8 output channels on the cPCI-9116.

@ Syntax

C/C++ (DOS)

int _9116_DO (I16 card_number , unsigned int data)

@ Argument

card_number:	the card number of the cPCI-9116 to be initialized, totally 4 cards can be initialized, valid card numbers are CARD_1, CARD_2, CARD_3, CARD_4
data:	data written to the output port.

@ Return Code

6.5 AD Channel Gain Queue configuration functions

6.5.1 _9116_AD_CIr_CFIFO

@ Description

This function is used to reset the A/D Channel Gain Queue (Refer to 5.1.2.1 for definition of Channel Gain Queue). Before calling the _9116_AD_Set_CFIFO function to set the A/D channel and input range, this function must be call to clear the A/D Channel Gain Queue.

@ Syntax

C/C++ (DOS)

int _9116_AD_Clr_CFIFO (I16 card_number)

@ Argument

card_number: the card number of the cPCI-9116 to be initialized, totally 4 cards can be initialized, valid card numbers are CARD_1, CARD_2, CARD_3, CARD_4.

@ Return Code

6.5.2 _9116_AD_Set_CFIFO

@ Description

This function is used to specify the A/D channel and the input range.

```
Note: _9116_AD_CIr_CFIFO should be called before you use this
function to set the channels and gains in the Channel-Gain
Queue. After the settings are completed, you have to call
_9116_AD_CFIFO_SetDone to stop filling out the Channel-Gain
Queue. The sequence to call these three functions is:
_9116_AD_CIr_CFIFO();
_9116_AD_Set_CFIFO();
:
```

: Setting A/D channels : and gains _9116_AD_Set_CFIFO();

_9116_AD_CFIFO_SetDone ();

@ Syntax

C/C++ (DOS)

int _9116_AD_Set_CFIFO(I16 card_number, I16 ch, I16 range, U16 diff, U16 cmmd_sel)

@ Argument

card_number:	the card number of the cPCI-9116 to be initialized, totally 4 cards can be initialized, valid card numbers are CARD_1, CARD_2, CARD_3, CARD_4.
ch :	the channel which is being set, valid values are between 0 to 63 for single-ended configuration and 0 to 31 for differential mode configuration.
range :	the A/D input range, possible values are listed in column 'AD_INPUT' of the following table.

AD_INPUT	GAIN	Input type (Bipolar or Unipolar)	Input Range
AD_B_5_V	1	Bipolar	±5V
AD_B_2_5_V	2	Bipolar	±2.5V
AD_B_1_25_V	4	Bipolar	±1.25V
AD_B_0_625_V	8	Bipolar	±0.625V
AD_U_10_V	1	Unipolar	0V ~ 10V
AD_U_5_V	2	Unipolar	0V ~ 5V
AD_U_2_5_V	4	Unipolar	0V ~ 2.5V
AD_U_1_25_V	8	Unipolar	0V ~ 1.25V

Diff:

differential/single-ended input selection: SINGLE_ENDED (or 0): single-ended **DIFFERENTIAL (or 1):** differential common mode reference selection when cmmd_sel: single-ended mode is selected: **0:** input signals are referenced to system ground 1: input signals are referenced to U_CMMD (pin1 of J1)

@ Return Code

ERR NoError ERR InvalidADChannel ERR_BoardNoInit ERR_InvalidADGain

6.5.3 _9116_AD_CFIFO_SetDone

@ Description

This function is used to stop setting A/D channel gain queue.

@ Syntax

C/C++ (DOS) int _ 9116_AD_CFIFO_SetDone (I16 card_number)

@ Argument

card_number: the card number of the cPCI-9116 to be initialized, totally 4 cards can be initialized, valid card numbers are CARD_1, CARD_2, CARD_3, CARD_4

@ Return Code

6.6 AD Software-Polling functions

6.6.1 _9116_AD_Acquire

@ Description

This function is used to poll the A/D converted data. It will trigger an A/D conversion, and read the A/D data when the data is ready. To perform a software-polling data acquisition, users must set the Channel Gain Queue using functions in 6.5, and then performing this function will retrieve the data in the order the Channel Gain Queue has been set. Refer to the sample program AD_DEMO0.C.

@ Syntax

C/C++ (DOS)

int _9116_AD_Acquire(I16 card_number, U16 far *ad_data)

@ Argument

card_number:	the card number of the cPCI-9116 to be initialized, totally 4 cards can be initialized, valid card numbers are CARD_1, CARD_2, CARD_3, CARD 4.
ad_data :	16-bit \overline{A}/D converted values in binary code format.

@ Return Code

6.7 AD Trigger control functions

6.7.1 _9116_AD_Trig_Ctrl _9116_AD_Set_TrigMode _9116_AD_Set_TrigPol _9116_AD_Set_Timebase _9116_AD_Set_Delay_SRC _9116_AD_Set_M_enable

@ Description

These functions are used to set the AD trigger controls. The _9116_AD_Trig_Ctrl() function provides settings for all trigger parameters, while the other functions provide individual settings for each trigger parameter.

@ Syntax

C/C++ (DOS)

int _9116_AD_Trig_Ctrl(I16 card_number, I16 trig_src, I16 trig_mode, I16 trig_pol, I16 timebase_sel, I16 delay_src, I16 retrig_en, I16 M_enable, I16 ACQ_enable)

int _9116_AD_Set_TrigMode(I16 card_number, I16 trig_mode)

int _9116_AD_Set_TrigPol(I16 card_number, I16 trig_pol)

int _9116_AD_Set_Timebase(I16 card_number, I16 timebase_sel)

int _9116_AD_Set_Delay_SRC(I16 card_number, I16 delay_src)

int _9116_AD_Set_M_enable(I16 card_number, I16 M_enable)

@ Argument

•	
card_number:	the card number of the cPCI-9116 to be initialized, totally 4 cards can be initialized, valid card numbers are CARD_1, CARD_2, CARD_3, CARD_4.
Trig_src:	Reserved. Set to 0 for proper operation.
Trig_mode:	Trigger mode setting. Refer to 5.1.3.3 for details.
	NO_TRIG (or 0): acquisition starts immediately
	when _9116_AD_DMA_Start() or
	_9116_AD_INT_Start() is performed(software
	trigger)
	POST_TRIG (or 1): post-trigger mode
	DLY_TRIG (or 2): delay-trigger mode
	PRE_TRIG (or 3): pre-trigger mode
	MN_TRIG (or 4): middle-trigger mode

Trig_pol:	trigger polarity setting:
•	RISE_TRIG (or 0): rising edge trigger
Timebase_sel:	FALL_TRIG (or 1): falling edge trigger Timebase source selection. Refer to 5.1.3.1 for details.
	INT TIMEBASE (or 0): internal timebase (24MHz)
	EXT_TIMEBASE (or 1): external timebase from
	pin45
Delay_src:	Delay source selection in delay-trigger mode. Refer to 5.1.3.3 for details.
	0: delay in timebase
retrig_en:	 delay in samples Enable/disable re-trigger mode acquisition when post-trigger or delay-trigger mode is selected.
	0: disable re-trigger
M_enable:	 enable re-trigger Enable/disable M_enable bit when pre-trigger or middle-trigger mode is selected. Mode acquisition when post-trigger or delay-trigger is selected. Refer to 5.1.3.3 (pre-trigger & middle-trigger section) for definition of M_enable set M_enable to 0 set M_enable to 1
ACQ_enable:	Set to 0 for proper operation
@ Return Code ERR_NoError ERR_BoardNoInit	

6.8 AD Counter setting functions

These functions are for the setting of the counter values when using programmable scan acquisition mode. Refer to Chapter 5 for definition of each counter.

6.8.1 _9116_AD_Set_SC

@ Description

Set SC_Counter value for programmable scan acquisition mode.

@ Syntax

C/C++ (DOS)

int _9116_AD_Set_SC(I16 card_number, U32 counter_value)

@ Argument

card_number:	the card number of the cPCI-9116 to be initialized totally 4 cards can be initialized, valid card numbers are CARD_1, CARD_2, CARD_3, CARD_4.
Counter_value:	the SC_Counter value. Range: 1 through to 16777215

@ Return Code

6.8.2 _9116_AD_Set_SI

@ Description

Set SI_Counter value for programmable scan acquisition mode.

@ Syntax

C/C++ (DOS) int _9116_AD_Set_SI(I16 card_number, U32 counter_value)

@ Argument

card_number:	the card number of the cPCI-9116 to be initialized, totally 4 cards can be initialized, valid card numbers are CARD_1, CARD_2, CARD_3,
Counter_value:	CARD_4. the SI_Counter value. Range: 96 through to 16777215

@ Return Code

ERR_NoError ERR_BoardNoInit

6.8.3 _9116_AD_Set_SI2

@ Description

Set SI2_Counter value for programmable scan acquisition mode.

@ Syntax

C/C++ (DOS) int _9116_AD_Set_SI2(I16 card_number, U32 counter_value)

@ Argument

card_number:	the card number of the cPCI-9116 to be initialized, totally 4 cards can be initialized, valid card numbers are CARD_1, CARD_2, CARD_3, CARD_4.
Counter_value:	the SI2_Counter value. Range: 96 through to 65536

@ Return Code

6.8.4 _9116_AD_Set_DIV

@ Description

Set DIV_Counter value for programmable scan acquisition mode. Refer to Chapter 5 for definition of DIV_Counter

@ Syntax

C/C++ (DOS)

int _9116_AD_Set_DIV(I16 card_number, U32 counter_value)

@ Argument

card_number:	the card number of the cPCI-9116 to be initialized, totally 4 cards can be initialized, valid card numbers are CARD_1, CARD_2, CARD_3, CARD_4
Counter_value:	the $DIV_{Counter value}$. Range: 1 through to 512

@ Return Code

ERR_NoError ERR_BoardNoInit

6.8.5 _9116_AD_Set_DLY1

@ Description

Set DLY1_Counter value when delay-trigger mode is selected.

@ Syntax

C/C++ (DOS) int _9116_AD_Set_DLY1(I16 card_number, U32 counter_value)

@ Argument

card_number:	the card number of the cPCI-9116 to be initialized, totally 4 cards can be initialized, valid card numbers are CARD_1, CARD_2, CARD_3, CARD_4
Counter_value:	the DLY1_Counter value. Range: 1 through to 65535

@ Return Code

6.8.6 _9116_AD_Set_M

@ Description

Set M_Counter value when pre-trigger or middle-trigger mode is selected.

@ Syntax

C/C++ (DOS)

int _9116_AD_Set_M(I16 card_number, U32 counter_value)

@ Argument

card_number:	the card number of the cPCI-9116 to be initialized, totally 4 cards can be initialized, valid card numbers are CARD_1, CARD_2, CARD_3, CARD_4
Counter_value:	the M_Counter value. Range: 1 through to 65535

@ Return Code

6.8.7 _9116_AD_Set_Retrig

@ Description

Set the number of re-trigger counts when post-trigger or delay-trigger mode is selected.

@ Syntax

C/C++ (DOS)

int _9116_ÁD_Set_Retrig(I16 card_number, I16 retrig_en, U16 retrig_no);

@ Argument

card_number:	the card number of cPCI-9116 to be initialized, totally 4 cards can be initialized, the valid card numbers are CARD_1, CARD_2, CARD_3, CARD_4.
retrig_en:	Enable/disable re-trigger mode acquisition when post-trigger or delay-trigger mode is selected. 0: disable re-trigger
retrig_no:	1: enable re-trigger Number of re-trigger counts. Range: 1 through to 65535

@ Return Code

6.9 AD one-shot scan data acquisition with DMA transfer functions

These functions are used to start scan data acquisition with DMA transfer according to the selected trigger mode and conditions.

6.9.1 _9116_AD_DMA_Start

@ Description

This function will perform programmable scan data acquisition with DMA data transfer using the pacer trigger. It takes place in the background and will not stop until the completion of all conversions or the execution of _9116_AD_DMA_Stop() function to stop the process. The data acquired will be in the order the Channel Gain Queue is set.

After executing this function, it is necessary to check the status of the operation by using the function _9116_AD_DMA_Status(), and execute _9116_AD_DMA_Stop() after obtaining the AD_DMA_STOP status from _9116_AD_DMA_Status().

@ Syntax

C/C++ (DOS)

int _9116_AD_DMA_Start(I16 card_number, U32 SI_value, U32 SI2_value, U32 SC_value, U32 DIV_value, U32 *ad_buffer)

card_number:	the card number of the cPCI-9116 to be initialized, totally 4 cards can be initialized, valid card numbers are CARD_1, CARD_2, CARD_3, CARD_4.
SI_value:	Set SI_Counter value. Range: 96 through to 16777215
SI2_value:	Set SI2_Counter value. Range: 96 through to 65535
SC_value:	Set SC_Counter value. Range: 1 through to 16777215
DIV_value:	Set DIV_Counter value. Range: 1 through to 65535
ad_buffer :	the start address of the memory buffer to store the A/D data, the buffer size must be larger then the numbers of A/D conversions. The memory should be of double-word length.

@ Return Code

ERR_NoError ERR_BoardNoInit, ERR_InvalidADChannel, ERR_InvalidTimerValue ERR_AD_InvalidGain

6.9.2 _9116_AD_DMA_Status

@ Description

Since the _9116_AD_DMA_Start() function runs in the background, this function can be used to check its operation status.

@ Syntax

C/C++ (DOS)

int I16 _9116_AD_DMA_Status(I16 card_number, I16 *status , U32 *count, U32 *start_idx);

@ Argument

card_number:	the card number of the cPCI-9116 to be initialized, totally 4 cards can be initialized, valid card numbers are CARD_1, CARD_2, CARD_3, CARD_4.
Status:	status of the DMA data transfer AD_DMA_STOP (or 0) : DMA is completed. AD_DMA_RUN (or 1) : DMA is not completed.
Count:	the number of A/D data that have been transferred.

@ Return Code

ERR_NoError ERR_AD_DMANotSet ERR_BoardNoInit

6.9.3 _9116_AD_DMA_Stop

@ Description

This function is used to stop the DMA data transfer and obtain the start index of the data buffer when pre-trigger or middle-trigger is selected.

@ Syntax

C/C++ (DOS)

int _9116_ÁD_DMA_Stop(I16 card_number, U32 *count, U32 *start_idx)

@ Argument

•	
card_number:	the card number of the cPCI-9116 to be initialized, totally 4 cards can be initialized, valid card numbers are CARD_1, CARD_2, CARD_3, CARD_4.
Count:	the number of A/D converted data that have been transferred.
start_idx:	The index where the data started from within the user's buffer, i.e the sequence of read data is: buff[start_idx], buff[start_idx+1], _, buff[0], buff[1],,buff[start_idx-1].

@ Return Code

6.10 AD one-shot scan data acquisition with interrupttransfer functions

These functions are used to start scan data acquisition with interrupt-transfer according to the selected trigger mode and conditions. Note that these functions cannot be applied to pre-trigger and middle-trigger mode.

6.10.1 _9116_AD_INT_Start

@ Description

This function will perform programmable scan data acquisition with interrupt transfer by using the pacer trigger. It takes place in the background and will not stop until the completion of all the conversions or the execution of _9116_AD_INT_Stop() function to stop the process. The data acquired will be in the order of the Channel Gain Queue setting.

After executing this function, it is necessary to check the status of the operation by using the function _9116_AD_INT_Status(), and execute _9116_AD_INT_Stop() after you obtain the AD_INT_STOP status from _9116_AD_INT_Status().

@ Syntax

C/C++ (DOS)

int 9116_AD_INT_Start(116 card_number, U32 SI_value, U32 SI2_value, U32 SC_value, U32 DIV_value, U16 *ad_buffer, U16 mode)

card_number:	the card number of the cPCI-9116 to be initialized, totally 4 cards can be initialized, valid card numbers are CARD_1, CARD_2, CARD_3, CARD_4.
SI_value:	Set SI_Counter value. Range: 96 through to 16777215
SI2_value: SC_value:	Set SI2_Counter value. Range: 96 through to 65535 Set SC_Counter value. Range: 1 through to 16777215
DIV_value: ad_buffer :	Set DIV_Counter value. Range: 1 through to 65535 the start address of the memory buffer to store the A/D data, the buffer size must be larger then the numbers of A/D conversion. The memory should be of double-word length.

 Mode:
 EOC or Half-full interrupt transfer mode selection

 0: EOC interrupt transfer mode
 1: Half-full interrupt transfer mode

@ Return Code

ERR_NoError ERR_BoardNoInit, ERR_InvalidADChannel, ERR_InvalidTimerValue ERR_AD_InvalidGain

6.10.2 _9116_AD_INT_Status

@ Description

Since the _9116_AD_INT_Start() function runs in the background, this function can be used to check its operation status.

@ Syntax

C/C++ (DOS)

int I16 _9116_AD_INT_Status(I16 card_number, I16 *status , U32 *count);

@ Argument

card_number:	the card number of the cPCI-9116 to be initialized, totally 4 cards can be initialized, valid card numbers are CARD_1, CARD_2, CARD_3, CARD_4.
Status:	status of the DMA data transfer AD_INT_STOP (or 0) : Interrupt transfer is completed. AD_INT_RUN (or 1) : Interrupt transfer is not completed.
Count:	the number of A/D data that has been transferred.

@ Return Code

ERR_NoError ERR_AD_DMANotSet ERR_BoardNoInit

6.10.3 _9116_AD_INT_Stop

@ Description

This function is used to stop the interrupt data being transferred.

@ Syntax

C/C++ (DOS) int _9116_AD_INT_Stop(I16 card_number, U32 *count)

@ Argument

card_number:	the card number of the cPCI-9116 to be initialized, totally 4 cards can be initialized, valid card numbers are CARD_1, CARD_2, CARD_3, CARD_4.
Count:	the number of A/D converted data that has been transferred.

@ Return Code

6.11 AD continuous scan data acquisition with double-buffered DMA transfer functions

These functions are used to perform continuous scan data acquisition with double-buffered DMA data transfer. It takes place in the background and will not stop until the execution of _9116_AD_DMA_Stop() function to stop the process. (Note these functions do not apply to pre-trigger and middle-trigger mode.) Refer to the sample program AD_DEMO10.C.

6.11.1 _9116_DblBufferMode

@ Description

This function is used to enable the double-buffered mode. If double-buffered mode is set, function _9116_AD_DMA_Start() will perform continuous scan data acquisition. Otherwise function _9116_AD_DMA_Start() only performs one-shot scan data acquisition.

@ Syntax

C/C++ (DOS)

int _9116_DblBufferMode(I16 card_number, U8 enable)

@ Argument

card_number: Enable:	the card number of the cPCI-9116 to be initialized, totally 4 cards can be initialized, valid card numbers are CARD_1, CARD_2, CARD_3, CARD_4. enable/disable double-buffered mode DMA.
	0: disabled 1: enabled

@ Return Code

6.11.2 _9116_DblBufferTransfer

@ Description

Using this function to copy the converted A/D data from the circular to transfer buffer.

@ Syntax

C/C++ (DOS)

int _9116_DblBufferTransfer(I16 card_number, U32 far *user_buffer)

@ Argument

card_number:	the card number of the cPCI-9116 to be initialized, totally 4 cards can be initialized, valid card numbers are CARD_1, CARD_2, CARD_3, CARD_4.
userBuffer :	user transfer buffer for A/D converted data, each

user Buffer : user transfer buffer for A/D converted data, each time _9116_DblBufferTransfer() copies half size of circular buffer to user's Buffer. The size of the circular in samples is specified in _9116_AD_DMA_Start () function call.

@ Return Code

6.11.3 _9116_GetOverrunStatus

@ Description

When you perform continuous scan data acquisition with double-buffered mode DMA transer but you do not use _9116_DblBufferTransfer() to copy converted data then circular buffer overrun will occur. You can use this function to check overrun counts.

@ Syntax

C/C++ (DOS)

int _9116_GetOverrunStatus(I16 card_number, U32 *overrun_cnt)

@ Argument

card_number:	the card number of the cPCI-9116 to be initialized, totally 4 cards can be initialized, valid card numbers are CARD_1, CARD_2, CARD_3, CARD_4.
overrunCount:	number of overrun counts.

@ Return Code

ERR_NoError

6.12 General Purpose Timer/Counter functions

6.12.1 _9116_GP0_Set_Mode

@ Description

This function is used to select operation mode of GPTC. Please refer to 5.3 for the details.

@ Syntax

C/C++ (DOS)

int _9116_GP0_Set_Mode(I16 card_number, U16 mode)

card_number:	the card number of the cPCI-9116 to be initialized, totally 4 cards can be initialized, valid card numbers are CARD_1, CARD_2, CARD_3, CARD_4.
Mode:	0: mode0 operation 1: mode1 operation

@ Return Code

ERR_NoError ERR_BoardNoInit

6.12.2 _9116_GP0_Set_Count

@ Description

This function is used to set the initial count value of GPTC

@ Syntax

C/C++ (DOS)

int _9116_GP0_Set_Count (I16 card_number, U16 GP_value)

@ Argument

card_number:	the card number of cPCI-9116 to be initialized, totally 4 cards can be initialized, the valid card numbers are CARD_1, CARD_2, CARD_3, CARD_4.
GP_value:	16-bit count initial value

@ Return Code

ERR_NoError ERR_BoardNoInit

6.12.3 _9116_GP0_Set_CLK

@ Description

This function is used to select the clock source of GPTC

@ Syntax

C/C++ (DOS)

int _9116_GP0_Set_CLK(I16 card_nmber, U8 clk_src)

@ Argument

card_number:	the card number of cPCI-9116 to be initialized, totally 4 cards can be initialized, the valid card numbers are CARD_1, CARD_2, CARD_3, CARD_4.
Clk_src :	0: internal clock source(24MHz timebase)1: external clock source from pin96 of J1

@ Return Code

6.12.4 _9116_GP0_Set_GATE_SRC

@ Description

This function is used to select the gate source of GPTC. When internal gate source is selected, you can use function _9116_GP0_EN to enable/disable the counting.

@ Syntax

C/C++ (DOS)

int _9116_GP0_Set_GATE_SRC(I16 card_number, U8 gate_src)

@ Argument

card_number:	the card number of cPCI-9116 to be initialized, totally 4 cards can be initialized, the valid card numbers are CARD_1, CARD_2, CARD_3, CARD_4.
gate_src :	0 : internal gate source 1: external clock source from pin97 of J1

@ Return Code

ERR_NoError ERR_BoardNoInit

6.12.5 _9116_GP0_Set_UPDOWN_SRC

@ Description

This function is used to select the up/down control source of GPTC. When internal source is selected, you can use function _9116_GP0_Set_UPDOWN() to select up/down counter operation.

@ Syntax

C/C++ (DOS)

Int 9116_GP0_Set_UPDOWN_SRC(I16 card_number, U8 updown_src)

card_number:	the card number of cPCI-9116 to be initialized, totally 4 cards can be initialized, the valid card numbers are CARD_1, CARD_2, CARD_3, CARD 4.
Updown_src:	0: internal source 1: external source from pin98 of J1

@ Return Code

ERR_NoError ERR_BoardNoInit

6.12.6 _9116_GP0_Set_UPDOWN

@ Description

This function is used to select up/down operation of GPTC when internal up/down source is selected.

@ Syntax

C/C++ (DOS)

Int _9116_GP0_Set_UPDOWN(I16 card_number, U8 updown)

@ Argument

card_number:	the card number of cPCI-9116 to be initialized, totally 4 cards can be initialized, the valid card numbers are CARD_1, CARD_2, CARD_3, CARD 4.
Updown:	0: count down 1: count up

@ Return Code

ERR_NoError ERR_BoardNoInit

6.12.7 _9116_GP0_EN

@ Description

This function is used to enable the counting of GPTC.

@ Syntax

C/C++ (DOS)

Int _9116_GP0_EN(I16 card_number, U8 gp0_en)

card_number:	the card number of cPCI-9116 to be initialized, totally 4 cards can be initialized, the valid card numbers are CARD_1, CARD_2, CARD_3, CARD_4.
Gp0_en:	0: disable counting 1: enable counting

@ Return Code

ERR_NoError ERR_BoardNoInit

6.12.8 _9116_GP0_Read_Count

@ Description

This function is used to read back the counter value of GPTC.

@ Syntax

C/C++ (DOS)

Int _9116_GP0_Read_Count(I16 card_number, U16 *GP_value)

@ Argument

card_number:	the card number of cPCI-9116 to be initialized, totally 4 cards can be initialized, the valid card numbers are CARD_1, CARD_2, CARD_3, CARD_4.
Gp_value:	read-backed counter value

@ Return Code

7

Software Utility & Calibration

This software CD provides a utility program, 9116util.exe, and is intended for: Calibration and Functional Testing. This utility is a menu-driven design and operates under the DOS environment. The text messages gives operating guidance, with graphics to indicate correct hardware configuration and location. The utility is described in the following sections. Note that the software driver for the cPCI-9116 and cPCI-9116R are the same.

7.1 Running 9116util.exe program

After finishing the DOS installation, you can execute the utility by typing the following command. (Assuming the utility is located in C:\ADLINK\9116\DOS_BC\Util directory, the following command should be entered at the DOS prompt.

C> cd\ADLINK\9116\DOS_BC\Util

C> 9116UTIL

The following diagram will be displayed on you screen. The message at the bottom of each window guides you through the selected item.

****** cPCI-9116 Utility Rev. 1.0 ******

Copyright © 2001-2002, ADLINK Technology Inc. All rights reserved.

<F1> : Calibration.

<F2> : Function testing.

<Esc>: Quit.

>>> Select function key F1 ~ F2, or press <Esc> to quit. <<<

Figure 22: CPCI-9116 Utility Main Screen

7.2 Calibration

In data acquisition processes, calibration of the measurement devices is very important to maintain its accuracy. Users can calibrate the analog input channels under the operating environment to optimizing the accuracy of the 9116 series card. The following section will guide you though the calibration process for the 9116 series card.

Note: For an environment with frequently large fluctuations in temperature and vibration, a 3 months re-calibration interval is recommended. For laboratory conditions, 6 months to 1 year is acceptable.

7.2.1 What do you need

Before calibrating your 9116 series card, you should prepare the following equipment's:

- A 5 1/2 digital multimeter (6 1/2 is recommended)
- A voltage calibrator or a very stable and noise free DC voltage generator

7.2.2 VR Assignment

There are 4 variable resistors (VR) on the 9116 series board that allows you to make adjustments to the A/D channels. The function of each VR is specified in Table 18.

VR1	A/D unipolar offset adjustment
VR2	A/D bipolar offset adjustment
VR3	A/D full scale adjustment
VR4	PGA offset adjustment

Table 18. Functions of VRs

7.2.3 A/D Adjustment

When you choose the calibration function from the main menu list, a calibration items menu is displayed on the screen. After you have select one of the calibration items from the calibration items menu, a calibration window displays on the screen. The upper window outlines the procedures that must be carefully followed to calibrate the 9116 series card. The instructions will guide you through the calibration process step by step. The bottom window shows the layout of the 9116 series card and the Variable Resister (VR) that needs to be adjusted will blink.

****** cPCI-9116 Calibration ******

<1> A/D PGA offset adjusting

<2> A/D (Bipolar Gain = 1, -5V ~ 5V) adjusting

<3> A/D (Unipolar Gain = 1, 0V ~ 10V) adjusting

<Esc> Quit

Select 1 to 3 or <Esc> to quit calibration.

Figure 23: A/D Adjustment menu Screen

7.2.3.1 PGA offset Calibration

- 1. Short the A/D channel 0 (pin 2 of J1) to ground (pin51 of J1).
- 2. Use multi-meter to measure the voltage between **TP1** and **TP2** on board.
- 3. Adjust VR4 to obtain the multi-meter value as close as possible to 0V.

7.2.3.2 Bipolar input Calibration

- 1. Calibrate the PGA offset as described in 7.2.3.1.
- 2. Connect A/D channel 0 (pin 2 of J1) to ground (pin 51 of J1), and Applied a precise +5V to A/D channel 1 (pin 3 of J1).
- Trim VR2 to obtain the reading of A/D channel 0 flicks between 0 to 1, and Trim VR3 to obtain reading of A/D channel 1 flicks between 32766~32767.

7.2.3.3 Unipolar input Calibration

- 1. Calibrate the PGA offset as described in 7.2.3.1.
- 2. Applied a precise +5 V input signal to A/D channel 1 (pin 3 of J1).
- 3. Trim *VR1* to obtain reading flicking between 0~1.

7.3 Functional Testing

This function is used to test the functions of the 9116 series card, it includes Digital I/O testing, A/D polling test, A/D Interrupt Test, A/D with DMA test, A/D with DMA & pre-trigger test, A/D with DMA & mn-trigger test, A/D with DMA & post-trigger test, A/D with DMA & delay-trigger with re-trigger=3 test, and A/D with continuous DMA test (Double buffer mode).

When you choose one of the testing functions from the function menu, a diagram is displayed on the screen. The figure below is the function testing menu window.

Select 0 to 9 or <Esc> to quit function testing

Figure 24: cPCI-9116 Function Testing Screen

A calibration utility is supported in the software CD that is included in the product package. The calibration procedures and descriptions can be found in the utility. Users only need to run the software calibration utility and follow the procedures.

The 9116 series card is shipped calibrated from the factory. Unless the 9116 card is operating in a very hostile environment with high temperature fluctuation and vibration, users do not need to calibrate the 9116 series card when you first receive it.

Warranty Policy

Thank you for choosing ADLINK. To understand your rights and enjoy all the after-sales services we offer, please read the following carefully.

- Before using ADLINK's products please read the user manual and follow the instructions exactly. When sending in damaged products for repair, please attach an RMA application form which can be downloaded from: http://rma.adlinktech.com/policy/.
- 2. All ADLINK products come with a limited two-year warranty, one year for products bought in China.
 - The warranty period starts on the day the product is shipped from ADLINK's factory.
 - Peripherals and third-party products not manufactured by ADLINK will be covered by the original manufacturers' warranty.
 - For products containing storage devices (hard drives, flash cards, etc.), please back up your data before sending them for repair. ADLINK is not responsible for any loss of data.
 - Please ensure the use of properly licensed software with our systems. ADLINK does not condone the use of pirated software and will not service systems using such software. ADLINK will not be held legally responsible for products shipped with unlicensed software installed by the user.
 - For general repairs, please do not include peripheral accessories. If peripherals need to be included, be certain to specify which items you sent on the RMA Request & Confirmation Form. ADLINK is not responsible for items not listed on the RMA Request & Confirmation Form.
- 3. Our repair service is not covered by ADLINK's guarantee in the following situations:
 - Damage caused by not following instructions in the User's Manual.
 - Damage caused by carelessness on the user's part during product transportation.
 - Damage caused by fire, earthquakes, floods, lightening, pollution, other acts of God, and/or incorrect usage of voltage transformers.

- Damage caused by inappropriate storage environments such as with high temperatures, high humidity, or volatile chemicals.
- Damage caused by leakage of battery fluid during or after change of batteries by customer/user.
- Damage from improper repair by unauthorized ADLINK technicians.
- Products with altered and/or damaged serial numbers are not entitled to our service.
- This warranty is not transferable or extendible.
- Other categories not protected under our warranty.
- 4. Customers are responsible for all fees necessary to transport damaged products to ADLINK.

For further questions, please e-mail our FAE staff: service@adlinktech.com