

DAQBench/X

 Measurement and Automation Widgets for
Linux X Window System

User’s Guide

@Copyright 1999-2000 ADLink Technology Inc.
All Rights Reserved.

Manual Rev. 1.00: September 28, 2000

The information in this document is subject to change without prior notice
in order to improve reliability, design and function and does not represent
a commitment on the part of the manufacturer.

In no event will the manufacturer be liable for direct, indirect, special,
incidental, or consequential damages arising out of the use or inability to
use the product or documentation, even if advised of the possibility of
such damages.

This document contains proprietary information protected by copyright.
All rights are reserved. No part of this manual may be reproduced by any
mechanical, electronic, or other means in any form without prior written
permission of the manufacturer.

Trademarks
IBM PC is a registered trademark of International Business Machines
Corporation. Intel is a registered trademark of Intel Corporation. Other
product names mentioned herein are used for identification purposes
only and may be trademarks and/or registered trademarks of their
respective companies.

Getting Service from ADLINK
Customer Satisfaction is always the most important thing for ADLink
Tech Inc. If you need any help or service, please contact us and get it.

ADLINK Technology Inc.
Web Site http://www.adlink.com.tw
 http://www.adlinktechnology.tw
Sales & Service service@adlink.com.tw
Technical NuDAQ nudaq@adlink.com.tw
Support NuDAM nudam@adlink.com.tw
 NuIPC nuipc@adlink.com.tw
 NuPRO nupro@adlink.com.tw
 Software sw@adlink.com.tw
 AMB amb@adlink.com.tw
TEL +886-2-82265877 FAX +886-2-82265717
Address 9F, No. 166, Jian Yi Road, Chungho City, Taipei, 235 Taiwan, R.O.C.
Please inform or FAX us of your detailed information for a prompt,
satisfactory and constant service.

Detailed Company Information
Company/Organization
Contact Person
E-mail Address
Address
Country
TEL FAX
Web Site

Questions
Product Model

¨OS:
¨Computer Brand:

Environment to Use

¨M/B: ¨CPU:
¨Chipset: ¨Bios:
¨Video Card:
¨Network Interface Card:
¨Other:

Challenge Description

Suggestions for ADLINK

Contents • i

Contents
CHAPTER 1 INSTALLATION ..1
1.1 DECOMPRESS DAQBENCH/X ...1

1.1.1 System Requirements..1
1.1.2 UNPACK...1

CHAPTER 2 INTRODUCING THE WIDGETS OF
DAQBENCH/X...2

2.1 XDBBOOLEAN WIDGET ..2
2.2 XDBSLIDE WIDGET ...3
2.3 XDBKNOB WIDGET ...3
2.4 XDBSSEGMENT WIDGET ..4
2.5 XDBLEDM ETER WIDGET ...4
2.6 XDBGRAPH WIDGET ...5
2.7 XDBCHART WIDGET ..5

CHAPTER 3 HOW TO USE DAQBENCH/X.................7

3.1 ABOUT THE WIDGETS..7
3.1.1 Creating a Widget ..7
3.1.2 Retrieving Widget Resource Values.............................8
3.1.3 Modifying Widget Resource Values.............................9
3.1.4 Using the Client Callback Interface10

CHAPTER 4 SAMPLE PROGRAMS12

4.1 SAMPLE PROGRAMS INCLUDED ..12
4.2 SAMPLE PROGRAMS DEVELOPED ENVIRONMENT...................13

How to Use This Guide

This manual is designed to help you use the DAQBench/X software package
for developing your measurement or automation applications. The manual
describes how to install and use the software to meet your requirements and
help you program your own software applications. It is organized as follows.

The DAQBench/X User’s Guide is organized as follows:

l Chapter 1, “installation”, describes how to install the software.

l Chapter 2, “Introducing the Widgets of DAQBench/X”, simply describes all
ActiveX controls of DAQBench; explains the individual controls, their object
structure and different style of control.

l Chapter 3, “How to use DAQBench/x”, describes how you can use
DAQBench/X and introduce some function that you might use when you use
DAQBench/X Widgets.

l Chapter 4, “Sample Programs" describes the sample programs in the
software diskette.

Installation • 1

1

Installation

1.1 Decompress DAQBench/X
Decompress DAQBench/X through a process that lasts approximately one
minute.

1.1.1 System Requirements

l An IBM PC/AT or compatibles, running Linux Kernel 2.2.x and X window

l A hard disk with enough disk space to insta ll DAQBench/X

l A CD-ROM drive or 1.44-MB, 3.5-inch floppy disk drive

l Application development system

l Using the appropriate C/C++ compiler (gcc or cc) to compile the program.

1.1.2 UNPACK
Decompress the DAQBench_x.tgz:

tar xvzf DAQBench_X.tgz

This will extract the ‘DaqBench_X’ directory with following subdirectories:

File/Sub-directory Description
Widgets <DIR> the files of widgets
Samples <DIR> the sample programs for DAQBench/X
Docs <DIR> documentations

2 • Introducing the Widgets of DAQBench/X

2

Introducing the Widgets of
DAQBench/X

2.1 XdbBoolean Widget
XdbBoolean widget is an UI component for operating Boolean functions. The
maximum bit of the XdbBoolean is 32. It can be used to indicate the Boolean
data like the LED signal. It also can be used to control the bit state of data like
the switch. So, the XdbBoolean widget is very convenient to be used as the
display of digital input and the control of digital output at data acquisition
operation.

Pattern style

Square Button Square Radio Button Square Push Button

LED Button Round Push Button Round Button

Toggle Switch Switch Slide Switch

Introducing the Widgets of DAQBench/X • 3

2.2 XdbSlide Widget
The XdbSlide widget represents different types of linear displays, such as the
variant slide, thermometers and tank display. With XdbSlide w idget, users can
input or output (display) individual or multiple scalar values. A XdbSlide can
have multiple pointers (maximum eight) on the widget, Each pointer
represents one scalar value.

Pattern style

Wide horizon slide Wide vertical slide Narrow horizon slide

Narrow vertical slide Tank Thermometer

2.3 XdbKnob Widget
The XdbKnob widget represents different types of circular displays, such as
the knob, dial and different type of meters. With XdbKnob widget, users can
input or output (display) individual or multiple scalar values. A XdbKnob can
have multiple pointers (maximum eight) on the widget, Each pointer
represents one scalar value.

Pattern style

Knob Dial Upper meter

 Down meter Left meter Right meter

4 • Introducing the Widgets of DAQBench/X

2.4 XdbSSegment Widget
XdbSSegnment widget is an UI component for display number using style of
seven segment display. Users can configure the arguments of widget to
specify the digit number, declined, digit number after point, color of segment,
transparent and signed, etc.

Pattern style

2.5 XdbLEDMeter Widget
XdbLEDMeter widget is an UI component for display number using style of
LED Bar display. Users can configure the argument of widget to specify the
bar number, direction, bar color, ticks, max value and min value, etc.

Pattern style

Introducing the Widgets of DAQBench/X • 5

2.6 XdbGraph Widget
The XdbGraph widget is a flexible widget used for plotting data. It can display
multiple plots (maximum eight plots). Plotting data refers to the process of
taking a large number of points and updating one or more plots on the graph
with new data.

The XAxis represents the input data points at horizon scale. Users can set the
ViewNumber resource to specify the XdbGraph object how many data points
will display on plot window. The XAxis object can display the time domain
scale when the scale format is “Date” or “Time”. The XAxis object includes one
Ticks object that will process different style of ticks color, ticks mark and ticks
label.
The YAxis represents the value of data points at vertical scale. Users can set
the maximum and minimum resource to specify the XdbGraph object has the
display range at plot window. The YAxis object has many scale formats to
display scale label. The YAxis object includes one Ticks object that will
process different style of ticks color ,ticks mark and ticks label.

The XdbGraph widget includes eight plots. Users can specify the resource of
each plot object that includes line style, line width, pointer style, fill style, line
color, fill color, pointer color, interpolation type.

Example

2.7 XdbChart Widget
The XdbDChart widget is a flexible widget used for charting data. It can
display multiple plots (maximum eight plots). Charting data appends new data
points to an existing plot over time. Charting is used with slow processes
where only few data points per second are added to the graph.

6 • Introducing the Widgets of DAQBench/X

The XAxis represents the input data points at horizon scale. Users can set the
ViewNumber resource to specify how many data points will display on plot
window. The XAxis object can display the time domain scale when the scale
format is “Date” or “Time”. The XAxis object includes one Ticks object that will
process different style of ticks color, ticks mark and ticks label.

The YAxis represents the value of data points at vertical scale. Users can set
the Maximum and Minimum resource to specify the display range at plot
window. The YAxis object has many scale formats to display scale label. The
YAxis object includes one Ticks object that will process different style of ticks
color, ticks mark and ticks label.
The XdbChart widget includes eight plots. Users can specify the resource of
each plot object that includes line style, line width, pointer style, fill style, line
color, fill color, pointer color, interpolation type.

Users can set the PlotMode argument of XdbChart to “Overlaid” or “Stacked”
to specify different type for multiple plot data. The UpdateMode resource of
XdbChart can determinate different update method while the charting data
would be continuously input and the plot window would be scrolling.

How to Use DAQBench/X • 7

3

How to use DAQBench/X

3.1 About the Widgets
When you want to use the widget of DAQBench/X in your program, you need
to include its header file and link its object file.

Widget Header File Object File

XdbBoolean Boolean.h Boolean.o

XdbSlide Slide.h Slide.o

XdbKnob Knob.h Knob.o

XdbSSegment SSegment.h SSegment.o

XdbLEDMeter LEDMeter.h LEDMeter.o

XdbChart Chart.h Chart.o

XdbGraph Graph.h Graph.o

3.1.1 Creating a Widget
Creating a widget is a three-step process. First, the widget instance is
allocated, and various instance-specific attributes are set by using
XtCreateWidget. Second, the widget’s parent is informed of the new child by
using XtManageChild. Finally, X windows are created for the parent and all
its children by using XtRealizeWidget and specifying the top-most widget.

8 • How to Use DAQBench/X

The first two steps can be combined by using XtCreateManagedWidget. In
addition, XtRealizeWidget is automatically called when the child becomes
managed if the parent is already realized.

To allocate, initialize, and manage a widget, use XtCreateManagedWidget.

Widget XtCreateManagedWidget(name, widget_class, parent, args, num_args)

String name;
WidgetClass widget_class;
Widget parent;
ArgList args;
Cardinal num_args;

name Specifies the instance name for the created widget that is used for
retrieving widget resources.
widget_class Specifies the widget class pointer for the created widget.
parent Specifies the parent widget ID.
args Specifies the argument list. The argument list is a variable-length list
composed of name and value pairs that contain information pertaining to
the specific widget instance being created.
num_args Specifies the number of arguments in the argument list. If the
num_args is zero, the argument list is never referenced.

When a widget instance is successfully created, the widget identifier is
returned to the application.
If an error is encountered, the XtError routine is invoked to inform the user
of the error.

For further information, see X Toolkit Intrinsics — C Language Interface.

3.1.2 Retrieving Widget Resource Values
To retrieve the current value of a resource attribute associated with a widget
instance, use XtGetValues.

void XtGetValues(w, args, num_args)

Widget w;
ArgList args;
Cardinal num_args;
w Specifies the widget.

How to Use DAQBench/X • 9

args Specifies a variable-length argument list of name and address pairs
that contain the resource name and the address into which the resource
value is stored.
num_args Specifies the number of arguments in the argument list. The
arguments and values passed in the argument list are dependent on the
widget.

Note that the caller is responsible for providing space into which the
returned resource value is copied; the ArgList contains a pointer to this
storage (e.g. x and y must be allocated as Position).

For further information, see the X Toolkit Intrinsics — C Language Interface.

3.1.3 Modifying Widget Resource Values
To modify the current value of a resource attribute associated with a widget
instance, use XtSetValues.

void XtSetValues(w, args, num_args)

Widget w;
ArgList args;
Cardinal num_args;

w Specifies the widget.
args Specifies an array of name and value pairs that contain the arguments to
be modified and their new values.
num_args Specifies the number of arguments in the argument list. The
arguments and values that are passed will depend on the widget being
modified.

Some widgets may not allow certain resources to be modified after the widget
instance has been created or realized. No notification is given if any part of a
XtSetValues request is ignored.

For further information about these functions, see the X Toolkit Intrinsics — C
Language Interface.

Note:
The argument list entry for XtGetValues specifies the address to which the caller
wants the value copied. The argument list entry for XtSetValues, however,
contains the new value itself, if the size of value is less than sizeof(XtArgVal)
(architecture dependent, but at least sizeof(long)); otherwise, it is a pointer to the
value. String resources are always passed as pointers, regardless of the length
of the string.

10 • How to Use DAQBench/X

3.1.4 Using the Client Callback Interface
Widgets can communicate changes in their state to their clients by means of a
callback facility. The format for a client’s callback handler is:

void CallbackProc(w, client_data, call_data)

Widget w;
XtPointer client_data;
XtPointer call_data;

w Specifies widget for which the callback is registered.
client_data Specifies arbitrary client-supplied data that the widget should pass
back to the client when the widget executes the client’s callback procedure.
This is a way for the client registering the callback to also register
client-specific data: a pointer to additional information about the widget, a
reason for invoking the callback, and so on. If no additional information is
necessary, NULL may be passed as this argument. This field is also frequently
known as the closure.
call_data Specifies any callback-specific data the widget wants to pass to the
client. For example, when Scrollbar executes its jumpProc callback list, it
passes the current position of the thumb in call_data.

Callbacks can be registered either by creating an argument containing the
callback list described below or by using the special convenience routines
XtAddCallback and XtAddCallbacks. When the widget is created, a pointer
to a list of callback procedure and data pairs can be passed in the argument
list to XtCreateWidget. The list is of type XtCallbackList:

typedef struct {

XtCallbackProc callback;

XtPointer closure;

} XtCallbackRec, *XtCallbackList;

The callback list must be allocated and initialized before calling
XtCreateWidget. The end of the list is identified by an entry containing NULL
in callback and closure. Once the widget is created, the client can change or
de-allocate this list; the widget itself makes no further reference to it. The
closure field contains the client_data passed to the callback when the callback
list is executed.

How to Use DAQBench/X • 11

The second method for registering callbacks is to use XtAddCallback after
the widget has been created.

void XtAddCallback(w, callback_name, callback, client_data)

Widget w;
String callback_name;
XtCallbackProc callback;
XtPointer client_data;

w Specifies the widget to add the callback to.
callback_name Specifies the callback list within the widget to append to.
callback Specifies the callback procedure to add.
client_data Specifies the data to be passed to the callback when it is invoked.

XtAddCallback adds the specified callback to the list for the named widget.

All widgets provide a callback list named destroyCallback where clients can
register procedures that are to be executed when the widget is destroyed. The
destroy callbacks are executed when the widget or an ancestor is destroyed.
The call_data argument is unused for destroy callbacks.

12 • Sample Programs

4

Sample Programs

4.1 Sample Programs Included
There are several sample programs provided in this DAQBench/X. They can
help you to program your own applications by using DAQBench/X easily. The
brief descriptions of these programs are specified as follows:

S_XdbBoolean An application using XdbBoolean Widget.

GNU C program

S_XdbSlide An application using XdbSlide Widget.

GNU C program

S_XdbKnob An application using XdbKnob Widget.

GNU C program

S_XdbSSegment An application using XdbSSegment Widget.

GNU C program

S_XdbLEDMeter An application using XdbLEDMeter Widget.

GNU C program

S_XdbGraph An application using XdbGraph Widget.

GNU C program

S_XdbChart An application using XdbChar Widget t.

GNU C program

Sample Programs • 13

4.2 Sample Programs Developed Environment
We provide seven GNU C sample programs in this package. By default, they
are located in directory DAQBENCH_X/SAMPLES.

You can use any editor to view or modify these source files. However, to build
the executable file, you must have appropriated C/C++ compiler (gcc or cc).
Please refer to related reference books to get the information about how to
use C/C++ compiler (gcc or cc).

