PC-HELPER

Isolated 16-bit Analog I/O Board for PCI Express

AIO-160802LI-PE

Analog Input Board

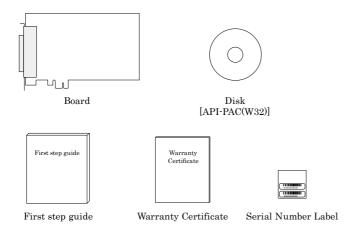
AI-1616LI-PE

Analog Output Board

AO-1604LI-PE

User's Guide

Check Your Package


Thank you for purchasing the CONTEC product.

The product consists of the items listed below.

Check, with the following list, that your package is complete. If you discover damaged or missing items, contact your retailer.

Product Configuration List

- Board (One of the following) ...1 [AIO-160802LI-PE, AI-1616LI-PE or AO-1604LI-PE]
- First step guide ... 1
- Disk *1 [API-PAC(W32)] ...1
- Warranty Certificate ...1
- Serial Number Label ...1
- *1 The bundled disk contains the driver software and User's Guide (this guide)

Copyright

Copyright 2008 CONTEC CO., LTD. ALL RIGHTS RESERVED

No part of this document may be copied or reproduced in any form by any means without prior written consent of CONTEC CO., LTD.

CONTEC CO., LTD. makes no commitment to update or keep current the information contained in this document. The information in this document is subject to change without notice.

All relevant issues have been considered in the preparation of this document. Should you notice an omission or any questionable item in this document, please feel free to notify CONTEC CO., LTD.

Regardless of the foregoing statement, CONTEC assumes no responsibility for any errors that may appear in this document or for results obtained by the user as a result of using this product.

Trademarks

MS, Microsoft, Windows, Windows NT and MS-DOS are trademarks of Microsoft Corporation. Other brand and product names are trademarks of their respective holder.

Table of Contents

	Check Your Package	i
	Copyright	ii
	Trademarks	ii
	Table of Contents	iii
1.	BEFORE USING THE PRODUCT	1
	About the Board	1
	Features	1
	Support Software	
	Cable & Connector (Option)	
	Accessories (Option)	4
	Customer Support	5
	Web Site	5
	Limited Three-Years Warranty	5
	How to Obtain Service	5
	Liability	5
	Safety Precautions	6
	Safety Information	
	Handling Precautions	7
	Environment	8
	Inspection	8
	Storage	
	Disposal	8
2.	SETUP	9
	What is Setup?	9
	Using the Board under Windows Using the Driver Library API-PAC(W32)	9
	Using the Board under Windows Using Software Other than the Driver Library API-	
	PAC(W32)	
	Using the Board under an OS Other than Windows	10
	Step 1 Installing the Software	
	About the Driver	
	Starting the Install Program	12
	Step 2 Setting the Hardware	14
	Parts of the Board and Factory Defaults	
	Setting the Board ID	
	Plugging the Board	15
	Step 3 Installing the Hardware	
	Turning on the PC	
	Using the API-AIO(WDM)	16

	Step4 Initializing the Software	
	Step 5 Checking Operations with the Diagnosis Program	20
	What is the Diagnosis Program?	
	Check Method	20
	Using the Diagnosis Program	21
	Setup Troubleshooting	24
	Symptoms and Actions	
	If your problem cannot be resolved	24
3.	EXTERNAL CONNECTION	25
	How to connect the connectors	25
	Connector shape	25
	Connector Pin Assignment	26
	Analog Input Signal Connection	32
	Single-ended Input	32
	Analog Output Signal Connection	33
	Digital I/O signals, Counter signals and Control signals Connection	
4.	FUNCTIONS	35
	Analog Input Function	35
	1. Setting the Conversion Conditions	
	2. Starting/Stopping Operation	
	3. Monitoring the Status and Acquiring Data	
	4.Reset	48
	Analog Output Function	49
	1. Setting the Conversion Conditions	
	2. Starting/Stopping Operation	58
	3. Monitoring the Status and Acquiring Data	58
	4.Reset	59
	Counter Function	60
	1. Setting the Operating Conditions	60
	2. Starting/Stopping Operation	61
	3. Monitoring the Status and Acquiring Data	
	4. Reset	62
	Digital Input Function	63
	Digital Output Function	64
5.	ABOUT SOFTWARE	65
	Bundled disk Directory Structure	65
	About Software for Windows	66
	Accessing the Help File	66

	Using Sample Programs	67
	Usage of Utility Program	69
	Uninstalling the Driver Libraries	74
	About Software for Linux	77
	Driver Software Install Procedure	77
	Accessing the Help File	78
	Using Sample Programs	78
	Uninstalling the driver	78
6.	ABOUT HARDWARE	79
	For detailed technical information	79
	For detailed technical information	
		79
	Hardware specification	79 86
	Hardware specification	
	Hardware specification Block Diagram Control Signal Timings	
	Hardware specification Block Diagram Control Signal Timings Control Signal Timings for Analog Input.	
	Hardware specification Block Diagram Control Signal Timings Control Signal Timings for Analog Input Control Signal Timings for Analog Output	

1. Before Using the Product

About the Board

This product is a PCI Express bus-compliant interface board used to provide an analog signal I/O, input and output function on a PC.

AIO-160802LI-PE features bus isolated 16-bit analog input 8 channels and 16-bit analog output 2 channels

AI-1616LI-PE features bus isolated 16-bit analog input 16 channels.

AO-1604LI-PE features bus isolated 16-bit analog output 4 channels.

Equipped with digital I/O and counter, this product is multifunction and bus isolated type that provides isolation between PC and external analog I/O circuit. This product carries buffer memory for 1K of data, allowing sampling to be performed in a variety of trigger / clock conditions.

Windows/Linux driver and full-fledged data logger software "C-LOGGER" is bundled with this product. Possible to be used as a data recording device for MATLAB and LabVIEW, with dedicated libraries.

Features

- < AIO-160802LI-PE >
- Bus isolated high precision analog input 8 channels / output 2 channels, each 4 channels for digital I/O, counter 1 channel

This product has analog input (10µsec / channel [100KSPS], 16-bit, 8 channels), analog output (10µsec [100KSPS], 16-bit, 2 channels), analog I/O control signal (Isolation TTL level 6 channels), digital I/O (4 channels each for Isolation TTL level), counter (32-bit, Isolation TTL level 1 channel).

- Functions and connectors are compatible with PCI compatible board ADAI16-8/2(LPCI)L The functions same with PCI compatible board ADAI16-8/2(LPCI)L are provided. In addition, as there is compatibility in terms of connector shape and pin assignments, it is easy to migrate from the existing system.
- < AI-1616LI-PE >
- Bus isolated high precision analog input 16 channels, each 4 channels for digital I/O, counter 1 channel

This product has analog input (10μ sec / channel [100KSPS], 16-bit, 16 channels), analog input control signal (Isolation TTL level 3 channels), digital I/O (4 channels each for Isolation TTL level), counter (32-bit, Isolation TTL level 1 channel).

- Functions and connectors are compatible with PCI compatible board ADI16-16(LPCI)L

 The functions same with PCI compatible board ADI16-16(LPCI)L are provided. In addition, as there is compatibility in terms of connector shape and pin assignments, it is easy to migrate from the existing system.
- < AO-1604LI-PE >
- Bus isolated high precision analog output 4 channels, each 4 channels for digital I/O, counter 1 channel

This product has analog output $(10\mu\text{sec} [100KSPS], 16\text{-bit}, 4\text{ channels})$, analog output control signal (Isolation TTL level 3 channels), digital I/O (4 channels each for Isolation TTL level), counter (32-bit, Isolation TTL level 1 channel).

- Functions and connectors are compatible with PCI compatible board DAI16-4(LPCI)L

 The functions same with PCI compatible board DAI16-4(LPCI)L are provided. In addition, as there is compatibility in terms of connector shape and pin assignments, it is easy to migrate from the existing system.
- < Analog input : AIO-160802LI-PE, AI-1616LI-PE >
- The start/end of sampling can be controlled by software, comparison of conversion data, an external trigger, etc.

You can select from software, comparison of conversion data or an external trigger to control the start of sampling. You can select from completion of sampling for a specified number of sessions, comparison of conversion data, an external trigger or software to control the end of sampling. The sampling cycle can be selected from the internal clock or an external clock.

- Equipped with buffer memory (1K data) that can be used in the FIFO or RING format The analog input block contains buffer memory (1K data) that can be used in the FIFO or RING format. This allows for background analog I/O that does not depend on the operation status of the software or PC.
- < Analog output: AIO-160802LI-PE, AO-1604LI-PE >
- The start/end of sampling can be controlled by software, an external trigger, etc.

You can select from software, an external trigger to control the start of sampling. You can select from completion of sampling for a specified number of sessions, an external trigger or software to control forcibly the end of sampling. The sampling cycle can be selected from the internal clock or an external clock.

- Safety design to adjust output voltage to 0V when power supply is turned on To prevent the unstable voltage and the connected device of D/A converter from fault and malfunctions when the power supply is turned on, the circuit is designed to adjust output voltage of the analog output to 0V.
- Equipped with buffer memory (1K data) that can be used in the FIFO or RING format The analog output block contains buffer memory (1K data) that can be used in the FIFO or RING format. This allows for background analog output that does not depend on the operation status of the software or PC.
- < Common >
- Bus isolation between PC and external I/O signals by a digital isolator Isolation between PC and external I/O circuit by a digital isolator improves noise tolerance.
- Digital filter function included to prevent misdetection due to chattering on external signals A digital filter is included to prevent misdetection due to chattering on the control signal (external trigger input signal, sampling clock input signal, etc.), digital input signal and counter input signal. (Except from external clock input signal and counter gate signal)
- Software-based calibration function

Calibration can be all performed by software. Apart from the adjustment information prepared before shipment, additional adjustment information can be stored according to the use environment.

Data logger software, Windows/Linux compatible driver libraries are attached.
 Using the bundled data logger software "C-LOGGER" allows you to display recorded signal data in graphs, save files without any special program. In addition, the driver library API-PAC(W32) which makes it possible to create applications of Windows/Linux is provided.

- MATLAB and LabVIEW is supported by a plug-in of dedicated library VI-DAQ. Using the dedicated library MATLAB and VI-DAQ makes it possible to make a LabVIEW application.

Support Software

You should use CONTEC support software according to your purpose and development environment.

Windows version of analog I/O driver API-AIO(WDM) [Stored on the bundled disk driver library API-PAC(W32)]

The API-AIO(WDM) is the Windows version driver library software that provides products in the form of Win32 API functions (DLL). Various sample programs such as Visual Basic and Visual C++, etc and diagnostic program *luseful for checking operation is provided.

For more details on the supported OS, applicable language and new information, please visit the CONTEC's Web site.

Linux version of analog I/O driver API-AIO(LNX)
[Stored on the bundled disk driver library API-PAC(W32)]

The API-AIO(LNX) is the Linux version driver software which provides device drivers (modules) by shared library and kernel version. Various sample programs of gcc are provided.

For more details on the supported OS, applicable language and new information, please visit the CONTEC's Web site.

Data Logger Software C-LOGGER

[Stored on the bundled disk driver library API-PAC(W32)]

C-LOGGER is a data logger software program compatible with our analog I/O products. This program enables the graph display of recorded signal data, zoom observation, file saving, and dynamic transfer to the spreadsheet software "Excel". No troublesome programming is required.

For more details on the supported OS, applicable language and new information, please visit the CONTEC's Web site.

Data Acquisition library for MATLAB ML-DAQ

(Available for downloading (free of charge) from the CONTEC web site.)

This is the library software which allows you to use our analog I/O device products on MATLAB by the MathWorks. Each function is offered in accordance with the interface which is integrated in MATLAB's Data Acquisition Toolbox.

For more details on the supported OS, applicable language and new information, please visit the CONTEC's Web site.

Data acquisition VI library for LabVIEW VI-DAQ

(Available for downloading (free of charge) from the CONTEC web site.)

This is a VI library to use in National Instruments LabVIEW.

VI-DAQ is created with a function form similar to that of LabVIEW's Data Acquisition VI, allowing you to use various devices without complicated settings.

For more details on the library and download of VI-DAQ, please visit the CONTEC's Web site.

Cable & Connector (Option)

Shield Cable with 50-Pin Mini-Ribbon Connectors at either Ends: PCB50PS-0.5P (0.5m)

: PCB50PS-1.5P (1.5m)

Shield Cable with 50-Pin Mini-Ribbon Connector at one End : PCA50PS-0.5P (0.5m)

: PCA50PS-1.5P (1.5m)

Accessories (Option)

Screw Terminal Unit (M3 x 50P) : EPD-50A *1*2

Buffer Amplifier Box for Analog Input Boards (8ch type) : ATBA-8L *1*3*4*5

Buffer Amplifier Box for Analog Input Boards (16ch type) : ATBA-16L *1*3*4

BNC Terminal Unit (for analog input 8ch) : ATP-8L *1*6

- *1 PCB50PS-0.5P or PCB50PS-1.5P optional cable is required separately.
- *2 "Spring-up" type terminal is used to prevent terminal screws from falling off.
- *3 Only AIO-160802LI-PE, AI-1616LI-PE can be used.
- *4 An external power supply is necessary (optional AC adaptor POA200-20 prepared.)
- *5 As for the AI-1616LI-PE, capable of using the analog input of up to 8ch.
- *6 Capable of using the analog input of up to 8ch, and analog output of up to 2ch.
- * Check the CONTEC's Web site for more information on these options.

↑ CAUTION -

It may affect the withstanding voltage depending on the cable and terminal unit to be used

Customer Support

CONTEC provides the following support services for you to use CONTEC products more efficiently and comfortably.

Web Site

https://www.contec.com/

Latest product information

CONTEC provides up-to-date information on products.

CONTEC also provides product manuals and various technical documents in the PDF.

Free download

You can download updated driver software and differential files as well as sample programs available in several languages.

Note! For product information

Contact your retailer if you have any technical question about a CONTEC product or need its price, delivery time, or estimate information.

Limited Three-Years Warranty

CONTEC products are warranted by CONTEC CO., LTD. to be free from defects in material and workmanship for up to three years from the date of purchase by the original purchaser.

Repair will be free of charge only when this device is returned freight prepaid with a copy of the original invoice and a Return Merchandise Authorization to the distributor or the CONTEC group office, from which it was purchased.

This warranty is not applicable for scratches or normal wear, but only for the electronic circuitry and original boards. The warranty is not applicable if the device has been tampered with or damaged through abuse, mistreatment, neglect, or unreasonable use, or if the original invoice is not included, in which case repairs will be considered beyond the warranty policy.

How to Obtain Service

For replacement or repair, return the device freight prepaid, with a copy of the original invoice. Please obtain a Return Merchandise Authorization number (RMA) from the CONTEC group office where you purchased before returning any product.

* No product will be accepted by CONTEC group without the RMA number.

Liability

The obligation of the warrantor is solely to repair or replace the product. In no event will the warrantor be liable for any incidental or consequential damages due to such defect or consequences that arise from inexperienced usage, misuse, or malfunction of this device.

Safety Precautions

Understand the following definitions and precautions to use the product safely.

Safety Information

This document provides safety information using the following symbols to prevent accidents resulting in injury or death and the destruction of equipment and resources. Understand the meanings of these labels to operate the equipment safely.

⚠ DANGER	DANGER indicates an imminently hazardous situation which, if not avoided, will result in death or serious injury.
⚠ WARNING	WARNING indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury.
⚠ CAUTION	CAUTION indicates a potentially hazardous situation which, if not avoided, may result in minor or moderate injury or in property damage.

Handling Precautions

↑ DANGER

Do not use the product where it is exposed to flammable or corrosive gas. Doing so may result in an explosion, fire, electric shock, or failure.

↑ CAUTION

- There are switches and jumpers on the board that need to be set in advance. Be sure to check these before installing the board.
- Only set the switches and jumpers on the board to the specified settings.
 Otherwise, the board may malfunction, overheat, or cause a failure.
- Do not strike or bend the board. Doing so could damage the board.
 Otherwise, the board may malfunction, overheat, cause a failure or breakage.
- Do not touch the board's metal plated terminals (edge connector) with your hands.
 Otherwise, the board may malfunction, overheat, or cause a failure.
 If the terminals are touched by someone's hands, clean the terminals with industrial alcohol.
- Do not plug or unplug the cables which are connected to the board while the PC or expansion unit is still turned on.
 - Otherwise, the board may malfunction, overheat, or cause a failure.
 - Be sure that the personal computer power is turned off.
- Do not install or remove the board to or from the slot while the computer's power is turned on.
 Otherwise, the board may malfunction, overheat, or cause a failure.
 Be sure that the personal computer or the I/O expansion unit power is turned off.
- Make sure that your PC or expansion unit can supply ample power to all the boards installed. Insufficiently energized boards could malfunction, overheat, or cause a failure.
- The specifications of this product are subject to change without notice for enhancement and quality improvement.
 - Even when using the product continuously, be sure to read the manual and understand the contents.
- Do not modify the product. CONTEC will bear no responsibility for any problems, etc., resulting from modifying this product.
- Regardless of the foregoing statements, CONTEC is not liable for any damages whatsoever (including damages for loss of business profits) arising out of the use or inability to use this CONTEC product or the information contained herein.
- Regarding "CE EMC Directive Notice".
 Please connect the Interface Connector with a shielded cable to meet the mentioned standard above.

Environment

Use this product in the following environment. If used in an unauthorized environment, the board may overheat, malfunction, or cause a failure.

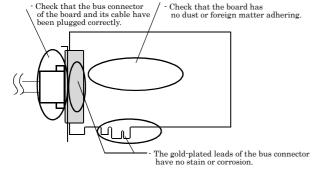
Operating temperature

0 - 50°C

Operating humidity

10 - 90%RH (No condensation)

Corrosive gases


None

Floating dust particles

Not to be excessive

Inspection

Inspect the product periodically as follows to use it safely.

Storage

When storing this product, keep it in its original packing form.

- (1) Put the board in the storage bag.
- (2) Wrap it in the packing material, then put it in the box.
- (3) Store the package at room temperature at a place free from direct sunlight, moisture, shock, vibration, magnetism, and static electricity.

Disposal

When disposing of the product, follow the disposal procedures stipulated under the relevant laws and municipal ordinances.

2. Setup

This chapter explains how to set up the board.

What is Setup?

Setup means a series of steps to take before the product can be used.

Different steps are required for software and hardware.

The setup procedure varies with the OS and applications used.

Using the Board under Windows

Using the Driver Library API-PAC(W32)

This section describes the setup procedure to be performed before you can start developing application programs for the board using the bundled disk "Driver Library API-PAC(W32)".

Taking the following steps sets up the software and hardware. You can use the diagnosis program later to check whether the software and hardware function normally.

Step 1 Installing the Software

Step 2 Setting the Hardware

Step 3 Installing the Hardware

Step 4 Initializing the Software

Step 5 Checking Operations with the Diagnosis Program

If Setup fails to be performed normally, see the "Setup Troubleshooting" section at the end of this chapter.

Using the Board under Windows

Using Software Other than the Driver Library API-PAC(W32)

For setting up software other than API-PAC(W32), refer to the manual for that software. See also the following parts of this manual as required.

This chapter Step 2 Setting the Hardware

This chapter Step 3 Installing the Hardware

Chapter 3 External Connection

Chapter 6 About Hardware

Using the Board under an OS Other than Windows

For using the board under Linux, see the following parts of this manual.

This chapter Step 2 Setting the Hardware

Chapter 3 External Connection

Chapter 5 About Software

Chapter 6 About Hardware

For using the board under an OS other than Windows and Linux, see the following parts of this manual.

This chapter Step 2 Setting the Hardware

Chapter 3 External Connection

Chapter 6 About Hardware

Step 1 Installing the Software

This section describes how to install the API function libraries.

Before installing the hardware on your PC, install the Driver libraries from the bundled disk.

The following description assumes the operating system as Windows XP. Although some user interfaces are different depending on the OS used, the basic procedure is the same.

About the Driver

There are the two drivers "API-AIO(WDM)" and "API-AIO(98/PC)" among the analog input/output drivers.

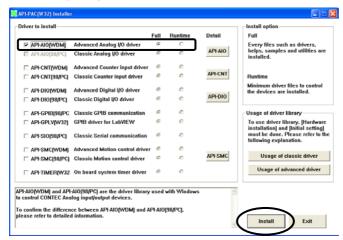
API-AIO(WDM) is a new driver to perform analog input and output under Windows.

It was developed aiming at "more easily use and more convenient" "more high performance" corresponding to the product version of API-AIO(98/PC) so far.

Please use the API-AIO(WDM) with this board. API-AIO(98/PC) is not supported.

Starting the Install Program

- (1) Load the bundled disk [API-PAC(W32)] on your PC.
- (2) The API-PAC(W32) Installer window appears automatically. If the panel does not appear, run (drive letter):\AUTORUN.exe.
- (3) Click on the [Install Development or Execution Environment] button.



Before installing the software in Windows Vista, XP, Server 2003, 2000, or NT, log in as a user with administrator privileges.

Selecting API-AIO(WDM)

- (1) The following dialog box appears to select "Driver to install" and "Install option", "Usage of driver library".
- (2) Select the "Advanced Analog I/O driver".
- (3) Click on the [Install] button.

 Clicking the [Detail] button displays detailed information about API-AIO(WDM) and API-AIO(98/PC).

Executing the Installation

- (1) Complete the installation by following the instructions on the screen.
- (2) The Readme file appears when the installation is complete.

You have now finished installing the software.

Step 2 Setting the Hardware

This section describes how to set the board and plug it on your PC.

The board has some switches and jumper to be preset.

Check the on-board switches and jumpers before plugging the board into an expansion slot.

The board can be set up even with the factory defaults untouched. You can change board settings later.

Parts of the Board and Factory Defaults

Figure 2.1. shows the names of major parts on the board.

Note that the switch setting shown below is the factory default.

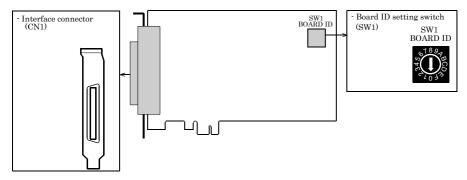


Figure 2.1. Part Names

Setting the Board ID

If you install two or more boards on one personal computer, assign a different ID value to each of the boards to distinguish them.

The board IDs can be set from 0 - Fh to identify up to sixteen boards.

If only one board is used, the original factory setting (Board ID = 0) should be used.

Setting Procedure

To set the board ID, use the rotary switch on the board. Turn the SW1 knob to set the board ID as shown below.

Figure 2.2. Board ID Settings (SW1)

Plugging the Board

- (1) Before plugging the board, shut down the system, unplug the power code of your PC.
- (2) Remove the cover from the PC so that the board can be mounted.
- (3) Plug the board into an expansion slot.
- (4) Attach the board bracket to the PC with a screw.
- (5) Put the cover back into place.

↑ CAUTION -

- Do not touch the board's metal plated terminals (edge connector) with your hands.
 Otherwise, the board may malfunction, overheat, or cause a failure.
 If the terminals are touched by someone's hands, clean the terminals with industrial alcohol.
- Do not install or remove the board to or from the slot while the computer's power is turned on.
 Otherwise, the board may malfunction, overheat, or cause a failure.
 Doing so could cause trouble. Be sure that the personal computer or the I/O expansion unit power is turned off.
- Make sure that your PC or expansion unit can supply ample power to all the boards installed. Insufficiently energized boards could malfunction, overheat, or cause a failure.

Step 3 Installing the Hardware

Windows needs to detect the I/O address and interrupt used by the board. This is called hardware installation.

When using more than one board, install the boards one at a time and do not install the next board until setup is complete for the previous board.

Turning on the PC

Turn on the power to your PC.

↑ CAUTION

- The board cannot be properly installed unless the resources (I/O addresses and interrupt level) for the board can be allocated. Before attempting to install the board, first determine what PC resources are free to use.
- The resources used by each board do not depend on the location of the PCI bus slot or the board itself. If you remove two or more boards that have already been installed and then remount one of them on the computer, it is unknown that which one of the sets of resources previously assigned to the two boards is assigned to the remounted board. In this case, you must check the resource settings.

Using the API-AIO(WDM)

- (1) When the "Found New Hardware Wizard" opens, select "Install the software automatically [Recommended]" and then click the "Next" button.
- * The wizard may not appear for some OS versions and instead the installation will start automatically. In this case, proceed to the software initial setup step.


< If using Windows 98 or Windows Me >

If using Windows 98 or Windows Me, specify the folder that contains the setup information (INF) file from the bundled disk.

Source folder

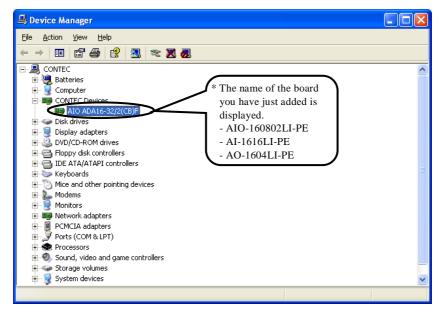
The setup information file (INF) is contained in the following folder on the bundled disk.

\INF\WDM\AIO

You have now finished installing the software.

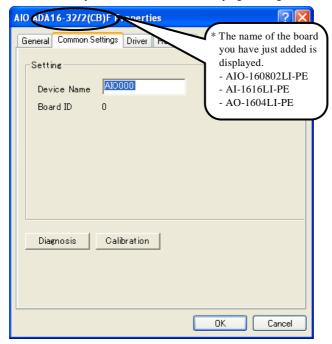
Step4 Initializing the Software

The driver library requires the initial setting to recognize the execution environment. It is called the initialization of the Driver library.


When Using API-AIO(WDM)

API-AIO(WDM) is initialized automatically during hardware installation. Therefore, if you want to use it with its initial settings, you can skip the setting procedure described in Step 4. To change the device name, follow the setting procedure shown below.

Setting the device name


(1) Run Device Manager. From [My Computer] - [Control Panel], select [System] and then select the [Device Manager] tab.

(You can also open Device Manager by right clicking on My Computer and selecting Properties.)

(2) The installed hardware appears under the CONTEC Devices node. Open the CONTEC Devices node and select the device you want to setup (the device name should appear highlighted). Click [Properties].

(3) The property page for the device opens.
Enter the device name in the common settings tab page and then click [OK].
The device name you set here is used later when programming.

- * The initial device name that appears is a default value. You can use this default name if you wish.
- * Make sure that you do not use the same name for more than one device.

You have now finished installing the initial setting of Software.

Step 5 Checking Operations with the Diagnosis Program

Use the diagnosis program to check that the board and driver software work normally, thereby you can confirm that they have been set up correctly.

What is the Diagnosis Program?

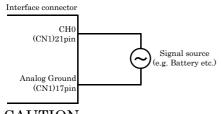
The diagnosis program diagnoses the states of the board and driver software.

It can also be used as a simple checker when an external device is actually connected.

Using the "Diagnosis Report" feature reports the driver settings, the presence or absence of the board, I/O status, and interrupt status.

Check Method

To check the analog I/O data, connect to an external signal source.


The figure below shows an example of checking by connecting to an external signal.

The analog input example illustrated below is an example of using analog input channel 0 on the AIO-160802LI-PE or AI-1616LI-PE. The analog output example illustrated below is an example of using analog output channel 0 on the AIO-160802LI-PE or AO-1604LI-PE.

Connection diagram

< Analog Input >

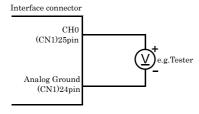
- Single-Ended Input

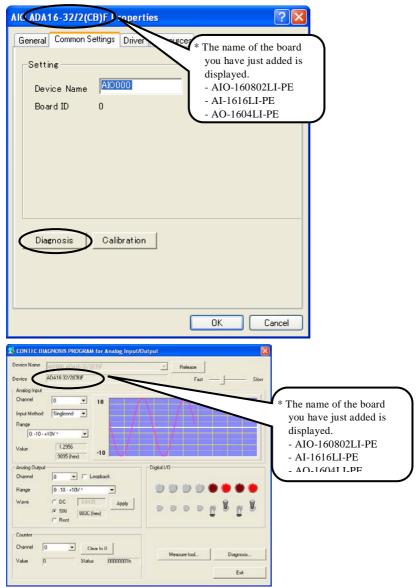
⚠ CAUTION

Input data remains indeterminate when no input pin is connected. The input pin for the channel not connected to the signal source must be connected to the analog ground.

For details, see "Chapter 3 External Connection".

< Analog Output >




Figure 2.3. Connection diagram

Using the Diagnosis Program

Starting the Diagnosis Program

Click the [Diagnosis] button on the device property page to start the diagnosis program.

Analog input

Select the input channel, input type, and input range from the lists.

Input data is plotted on a graph.

* This function is available only to the AIO-160802LI-PE and AI-1616LI-PE.

Analog output

You can select the desired output channel and output range from the lists.

You can set the output data to DC (constant voltage), sine wave, or square wave.

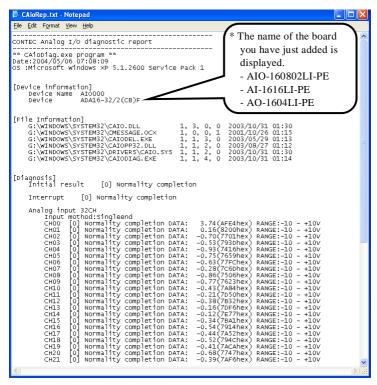
* This function is available only to the AIO-160802LI-PE and AO-1604LI-PE.

Digital I/O

The upper row of circular lamps indicates the digital input states. Red indicates the bit is ON and brown indicates OFF.

Clicking the lower row of switches turns the digital output bits ON or OFF.

Counter input


Selecting a counter channel displays the count value and state of that counter channel.

Clicking the zero clear button resets the count to zero.

Diagnosis Report

(1) The diagnosis report saves detailed data, including the device settings and settings for each channel, to a text file and displays the file for you to view.

Clicking [Diagnosis Report] prompts you to specify where to save the report text file.

- (2) The diagnosis report contains the following data.
 - Version of OS
 - Device Information
 - File Information
 - Initialization, interrupts, current input or output state for each channel

Setup Troubleshooting

Symptoms and Actions

Data input or output does not operate correctly

- Run the diagnosis program to check that the device is registered and whether any initialization errors have occurred.
- Is there a problem with the device settings, wiring, or similar? Check the I/O range setting. Also, the input data will be undefined if the wiring terminals are not connected. Ensure that the channels you are using are correctly connected. Connect unused channels to analog ground.
- For voltage input, check by connecting a battery or similar if you do not have any other suitable signal source. Also check that connecting to analog ground reads correctly as 0V.

The board works with the Diagnosis Program but not with an application.

The Diagnosis Program is coded with API-TOOL functions. As long as the board operates with the Diagnosis Program, it is to operate with other applications as well. In such cases, review your program while paying attention to the following points:

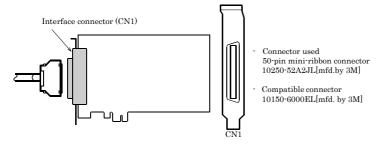
- Check the return values of the API functions.
- Refer to the source code for the sample programs.

The OS won't normally get started or detect the device.

Refer to the "Troubleshooting" section of API-AIO(WDM) HELP.

If your problem cannot be resolved

Contact your retailer.


3. External Connection

This chapter describes the interface connectors on the board and the external I/O circuits. Check the information available here when connecting an external device.

How to connect the connectors

Connector shape

To connect an external device to this board, plug the cable from the device into the interface connector (CN1) shown below.

^{*} Please refer to chapter 1 for more information on the supported cable and accessories.

Figure 3.1. Interface Connector Shape

Connector Pin Assignment

Pin Assignments of AIO-160802LI-PE Interface Connector (CN1)

Non Connect	N.C.	50					25	AO 00	Analog Output 00
Analog Ground (for AO)	AGND	49					24	AGND	Analog Ground (for AO)
Non Connect	N.C.	48					23	AO 01	Analog Output 01
Analog Ground (for AO)	AGND	47					22	AGND	Analog Ground (for AO)
Analog Input 04	AI 04	46			\bigcap		21	AI 00	Analog Input 00
Non Connect	N.C.	45	50 4	-	\vdash	25	20	N.C.	Non Connect
Analog Input 05	AI 05	44					19	AI 01	Analog Input 01
Non Connect	N.C.	43					18	N.C.	Non Connect
Analog Ground (for AI)	AGND	42					17	AGND	Analog Ground (for AI)
Analog Ground (for AI)	AGND	41					16	AGND	Analog Ground (for AI)
Analog Input 06	AI 06	40					15	AI 02	Analog Input 02
Non Connect	N.C.	39					14	N.C.	Non Connect
Analog Input 07	AI 07	38					13	AI 03	Analog Input 03
Non Connect	N.C.	37					12	N.C.	Non Connect
AO External Start Trigger Input	AO START	36					11	AI START	AI External Start Trigger Input
AO External Stop Trigger Input	AO STOP	35					10	AI STOP	AI External Stop Trigger Input
AO External Sampling Clock Input	AO EXCLK	34					9	AI EXCLK	AI External Sampling Clock Input
Digital Ground	DGND	33					8	DGND	Digital Ground
Digital Output 00	DO 00	32					7	DI 00	Digital Input 00
Digital Output 01	DO 01	31	26			- 1	6	DI 01	Digital Input 01
Digital Output 02	DO 02	30			J		5	DI 02	Digital Input 02
Digital Output 03	DO 03	29					4	DI 03	Digital Input 03
Digital Ground	DGND	28					3	DGND	Digital Ground
Counter UP Clock Input	CNT UPCLK	27					2	CNT GATE	Counter Gate Control Input
Reserved	Reserved	26					1	CNT OUT	Counter Output

Analog Input00 - Analog Input07	Analog input signal. The numbers correspond to channel numbers.
Analog Output00 - Analog Output01	Analog output signal. The numbers correspond to channel numbers.
Analog Ground	Common analog ground for analog I/O signals.
AI External Start Trigger Input	External trigger input for starting analog input sampling.
AI External Stop Trigger Input	External trigger input for stopping analog input sampling.
AI External Sampling Clock Input	External sampling clock input for analog input.
AO External Start Trigger Input	External trigger input for starting analog output sampling.
AO External Stop Trigger Input	External trigger input for stopping analog output sampling.
AO External Sampling Clock Input	External sampling clock input for analog output.
Digital Input00 - Digital Input03	Digital input signal.
Digital Output00 - Digital Output03	Digital output signal.
Counter Gate Control Input	Gate control input signal for counter.
Counter Up Clock Input	Count-up clock input signal for counter.
Counter Output	Counter output signal.
Digital Ground	Common digital ground for digital I/O signals, external trigger inputs,
	external sampling clock inputs, and counter I/O signals.
Reserved	Reserved pin.
N.C.	No connection to this pin.

Figure 3.2. Pin Assignments of Interface Connector (CN1) <AIO-160802LI-PE>

↑ CAUTION -

- Do not connect any of the outputs and power outputs to the analog or digital ground. Neither connect outputs to each other. Doing either can result in a fault.
- If analog and digital ground are shorted together, noise on the digital signals may affect the analog signals. Accordingly, analog and digital ground should be separated.
- Leave "Reserved" pins unconnected. Connecting these pins may cause a fault in the board.

in Assignments of AI-1616LI-PE Interface Connector (CN1)

Non Connect	N.C.	50		25	N.C.	Non Connect
Reserved	Reserved	49		24	Reserved	Reserved
Non Connect	N.C.	48		23	N.C.	Non Connect
Reserved	Reserved	47		22	Reserved	Reserved
Analog Input 04	AI 04	46		21	AI 00	Analog Input 00
Analog Input 12	AI 12	45	50 25	20	AI 08	Analog Input 08
Analog Input 05	AI 05	44		19	AI 01	Analog Input 01
Analog Input 13	AI 13	43		18	AI 09	Analog Input 09
Analog Ground (for AI)	AGND	42		17	AGND	Analog Ground (for AI)
Analog Ground (for AI)	AGND	41		16	AGND	Analog Ground (for AI)
Analog Input 06	AI 06	40		15	AI 02	Analog Input 02
Analog Input 14	AI 14	39		14	AI 10	Analog Input10
Analog Input 07	AI 07	38		13	AI 03	Analog Input 03
Analog Input 15	AI 15	37		12	AI 11	Analog Input 11
Non Connect	N.C.	36		11	AI START	AI External Start Trigger Input
Non Connect	N.C.	35		10	AI STOP	AI External Stop Trigger Input
Non Connect	N.C.	34		9	AI EXCLK	AI External Sampling Clock Input
Digital Ground	DGND	33		8	DGND	Digital Ground
Digital Output 00	DO 00	32		7	DI 00	Digital Input 00
Digital Output 01	DO 01	31	26	6	DI 01	Digital Input 01
Digital Output 02	DO 02	30		5	DI 02	Digital Input 02
Digital Output 03	DO 03	29		4	DI 03	Digital Input 03
Digital Ground	DGND	28		3	DGND	Digital Ground
Counter UP Clock Input	CNT UPCLK	27		2	CNT GATE	Counter Gate Control Input
Reserved	Reserved	26		1	CNT OUT	Counter Output

Analog Input00 - Analog Input15	Analog input signal. The numbers correspond to channel numbers.
Analog Ground	Common analog ground for analog I/O signals.
AI External Start Trigger Input	External trigger input for starting analog input sampling.
AI External Stop Trigger Input	External trigger input for stopping analog input sampling.
AI External Sampling Clock Input	External sampling clock input for analog input.
Digital Input00 - Digital Input03	Digital input signal.
Digital Output00 - Digital Output03	Digital output signal.
Counter Gate Control Input	Gate control input signal for counter.
Counter Up Clock Input	Count-up clock input signal for counter.
Counter Output	Counter output signal.
Digital Ground	Common digital ground for digital I/O signals, external trigger inputs,
	external sampling clock inputs, and counter I/O signals.
Reserved	Reserved pin,
N.C.	No connection to this pin.

Figure 3.3. Pin Assignments of Interface Connector (CN1) <AI-1616LI-PE>

⚠ CAUTION —

- Do not connect any of the outputs and power outputs to the analog or digital ground. Neither connect outputs to each other. Doing either can result in a fault.

- If analog and digital ground are shorted together, noise on the digital signals may affect the analog signals. Accordingly, analog and digital ground should be separated.
- Leave "Reserved" pins unconnected. Connecting these pins may cause a fault in the board.

Pin Assignments of AO-1604LI-PE Interface Connector (CN1)

Analog Output 02	AO 02	50		25	AO 00	Analog Output 00
Analog Ground (for AO)	AGND	49		24	AGND	Analog Ground (for AO)
Analog Output 03	AO 03	48		23	AO 01	Analog Output 01
Analog Ground (for AO)	AGND	47		22	AGND	Analog Ground (for AO)
Non Connect	N.C.	46		21	N.C.	Non Connect
Non Connect	N.C.	45	50 25	20	N.C.	Non Connect
Non Connect	N.C.	44		19	N.C.	Non Connect
Non Connect	N.C.	43		18	N.C.	Non Connect
Reserved	Reserved	42		17	Reserved	Reserved
Reserved	Reserved	41		16	Reserved	Reserved
Non Connect	N.C.	40		15	N.C.	Non Connect
Non Connect	N.C.	39		14	N.C.	Non Connect
Non Connect	N.C.	38		13	N.C.	Non Connect
Non Connect	N.C.	37		12	N.C.	Non Connect
AO External Start Trigger Input	AO START	36		11	N.C.	Non Connect
AO External Stop Trigger Input	AO STOP	35		10	N.C.	Non Connect
AO External Sampling Clock Input	AO EXCLK	34		9	N.C.	Non Connect
Digital Ground	DGND	33		8	DGND	Digital Ground
Digital Output 00	DO 00	32		7	DI 00	Digital Input 00
Digital Output 01	DO 01	31	26 1	6	DI 01	Digital Input 01
Digital Output 02	DO 02	30		5	DI 02	Digital Input 02
Digital Output 03	DO 03	29		4	DI 03	Digital Input 03
Digital Ground	DGND	28		3	DGND	Digital Ground
Counter UP Clock Input	CNT UPCLK	27		2	CNT GATE	Counter Gate Control Input
Reserved	Reserved	26		1	CNT OUT	Counter Output

Analog Output00 - Analog Output03	Analog output signal. The numbers correspond to channel numbers.		
Analog Ground	Common analog ground for analog I/O signals.		
AO External Start Trigger Input	External trigger input for starting analog output sampling.		
AO External Stop Trigger Input	External trigger input for stopping analog output sampling.		
AO External Sampling Clock Input	External sampling clock input for analog output.		
Digital Input00 - Digital Input03	Digital input signal.		
Digital Output00 - Digital Output03	Digital output signal.		
Counter Gate Control Input	Gate control input signal for counter.		
Counter Up Clock Input	Count-up clock input signal for counter.		
Counter Output	Counter output signal.		
Digital Ground	Common digital ground for digital I/O signals, external trigger inputs, external sampling clock inputs, and counter I/O signals.		
Reserved	Reserved pin.		
N.C.	No connection to this pin.		

Figure 3.4. Pin Assignments of Interface Connector (CN1) <AO-1604LI-PE>

↑ CAUTION —

- Do not connect any of the outputs and power outputs to the analog or digital ground. Neither connect outputs to each other. Doing either can result in a fault.

- If analog and digital ground are shorted together, noise on the digital signals may affect the analog signals. Accordingly, analog and digital ground should be separated.
- Leave "Reserved" pins unconnected. Connecting these pins may cause a fault in the board.

Analog Input Signal Connection

Analog signal input types are divided into single-ended input and differential input. This board uses single-ended input fixed. The following examples show how to connect analog input signals using a flat cable and a shielded cable.

Single-ended Input

The following figure shows an example of flat cable connection.

Connect separate signal and ground wires for each analog input channel on CN1.

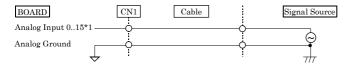


Figure 3.5. Single-ended Input Connection (Flat Cable)

The following figure shows an example of shield cable connection. Use shielded cable if the distance between the signal source and board is long or if you want to provide better protection from noise. For each analog input channel on CN1, connect the core wire to the signal line and connect the shielding to ground.

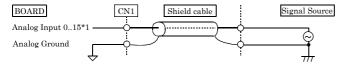


Figure 3.6. Single-ended Input Connection (Shield Cable)

*1 The number of channels depends on each board.

The AIO-160802LI-PE has eight channels; the AI-1616LI-PE has 16 channels; the AO-1604LI-PE has no channel

↑ CAUTION -

- If the signal source contains over 1MHz signals, the signal may effect the cross-talk noise between channels.
- If the board and the signal source receive noise or the distance between the board and the signal source is too long, data may not be input properly.
- An input analog signal should not exceed the maximum input voltage (relate to the board analog ground). If it exceeds the maximum voltage, the board may be damaged.
- Connect all the unused analog input channels to analog ground.
- The signal connected to an input pin may fluctuate after switching of the multiplexer. If this occurs, shorten the cable between the signal source and the analog input pin or insert a high-speed amplifier as a buffer between the two to reduce the fluctuation.

- An input pin may fail to obtain input data normally when the signal source connected to the pin has high impedance. If this is the case, change the signal source to one with lower output impedance or insert a high-speed amplifier buffer between the signal source and the analog input pin to reduce the effect.
- Analog ground of CN1 is isolated from the ground in the PC.

Analog Output Signal Connection

This section shows how to connect the analog output signal by using a flat cable or a shielded cable.

The following figure shows an example of flat cable connection.

Connect the signal source and ground to the CN1 analog output.

Figure 3.7. Analog Output Connection (Flat Cable)

The following figure shows an example of shield cable connection. Use shielded cable if the distance between the signal source and board is long or if you want to provide better protection from noise. For each analog input channel on CN1, connect the core wire to the signal line and connect the shielding to ground.

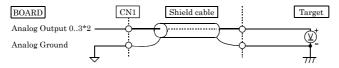


Figure 3.8. Analog Output Connection (Shield Cable)

*2 The number of channels depends on each board.

The AIO-160802LI-PE has two channels; the AI-1616LI-PE has no channel; the AO-1604LI-PE has four channels

↑ CAUTION

- When the power supply is turned on, the output voltage of all channels becomes 0V.
- If the board or the connected wire receives noise, or the distance between the board and the target is long, data may not be outputted properly.
- Do not short the analog output signal to analog ground, digital ground, and/or power line. Doing so may damage the board.
- Do not connect an analog output signal to any other analog output, either on the board or on an external device, as this may cause a fault on the board.
- Analog ground of CN1 is isolated from the ground in the PC.

Digital I/O signals, Counter signals and Control signals Connection

The following sections show examples of how to connect digital I/O signals, counter I/O signals, and other control I/O signals (external trigger input signals, sampling clock input signals, etc.).

All the digital I/O signals and control signals are TTL level signals.

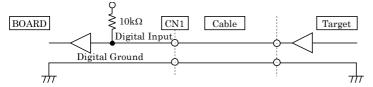


Figure 3.9. Digital Input Connection

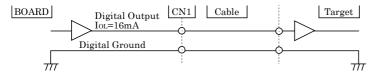


Figure 3.10. Digital Output Connection

About the counter input control signal

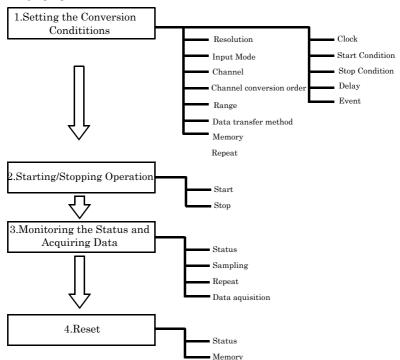
Counter Gate Control Input (refer to the chapter 3 Connector Pin Assignment) acts as an input that validate or invalidate the input of an external clock for the counter. This function enables the control of an external clock input for the counter. The external clock for the counter is effective when input is "High", and invalid when input is "Low". If unconnected, it is a pull-up in the board (card) and remains "High". Therefore the external clock for the counter is effective when the counter gate control input is not connected.

↑ CAUTION

- Do not short the output signals to analog ground, digital ground, and/or power line. Doing so may damage the board.
- Do not connect a digital output signal to any other digital output, either on the board or on an
 external device, as this may cause a fault on the board.
- Digital ground of CN1 is isolated from the ground in the PC.

Reference

For the operation timings for control signal input, see "Control Signal Timings" in Chapter 6 "Hardware".


4. Functions

This chapter describes the different functions that can be implemented using the hardware and driver together. Unless stated otherwise, the driver is assumed to be API-AIO(WDM).

Analog Input Function

The board converts analog signals to digital data according to the resolution and stores it in memory. You can set a variety of conditions for analog input, including the input channel, sampling period, and sampling start/stop conditions.

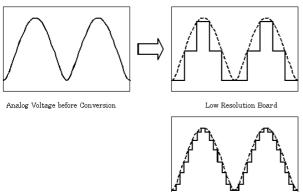
Analog input processes are classified as follows:

^{*} This function is available to the AIO-160802LI-PE and AI-1616LI-PE.

1. Setting the Conversion Conditions

First, set the conditions for executing analog input.

Resolution


"Resolution" signifies the number of bits used by an analog input device to represent analog signals. The higher the resolution, the more finely the voltage range is segmented, allowing the device to

convert analog values to digital equivalents more precisely.

A device with a resolution of 12-bit divides the range width into 4096 segments.

When the device covers the range of 0 - 10V, the minimum unit of converted voltages is $10 \div 4096 \approx 2.44$ mV.

If the device has a resolution of 16-bit, it is $10 \div 65536 \approx 0.153 \text{mV}$ instead.

High Resolution Board

AIO-160802LI-PE : The resolution is 16-bit.
AI-1616LI-PE : The resolution is 16-bit.
AO-1604LI-PE : The function is not available.

Input Mode

"Input Mode" indicates the method of connecting analog input signals.

The input modes available are single-ended input and differential input.

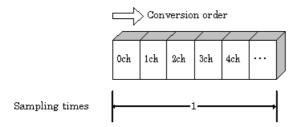
The single-ended input mode is suitable for the environment in which the potential difference between the signal source and ground and noise components can be ignored. For the environment in which they cannot be ignored, the differential input mode is suitable. The number of channels available in differential input mode is half that in single-ended input mode.

Software setup of the input mode is not required as this board uses the single-ended input mode fixed.

Channel

"Channel" represents each channel No. of analog input signal.

For channel numbers, see "How to connect the connectors" to "Connector Pin Assignment" in Chapter 3 "External Connection".


The channel selection specifies the channel number or the number of channels (channel consecutive from channel 0) in which it wants to convert AD.

Channel conversion order

Normally, when performing conversion for more than one channel at each sampling, conversion is performed consecutively starting from channel 0.

Software setup is not required as this board uses a fixed channel conversion priority.

Range

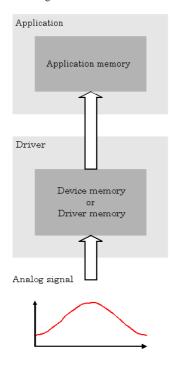
"Range" means the range of voltages at which analog input can be performed. Software setup of the range is not required as this board uses a fixed range of voltages.

AIO-160802LI-PE : ±10V AI-1616LI-PE : ±10V

AO-1604LI-PE : The function is not available.

Data transfer method

A device buffer mode is available, which uses the device's or driver's conversion data storage memory.


- Device buffer mode

When conversion starts, data is saved in the device buffer (memory on the device itself or in the driver).

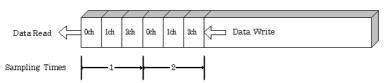
The device buffer can operate as FIFO or ring memory.

The application calls an API function at an appropriate timing and fetches the conversion data from the device buffer.

The device buffer mode provides function that allows the number of items of conversion data using the number of sampling times as a unit to obtain the number of items of conversion data directly from the voltage.

Device buffer mode

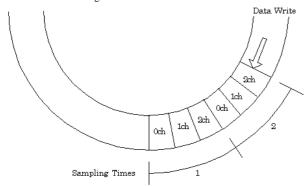
Memory format


This board uses device buffer transfer mode; it does not require software setup of the memory format.

Device buffer mode

- FIFO format

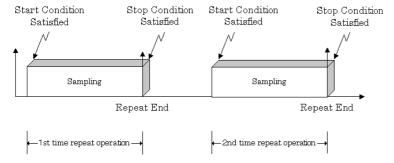
In the FIFO (First In First Out) format, input data items are read from memory in the same order in which they were written to the memory. Input data items are fed out of the memory sequentially, where the oldest one is always read from the memory. The status monitor and application notification functions are provided, which check and report the state in which the memory has stored a fixed amount of data or in which the memory has become full.


The FIFO memory is used to obtain all input data from analog input in a short or infinite period of time.

- Ring format

In the ring format, the memory contains storage areas arranged in a ring. Input data items are written to the memory sequentially. When it stores data exceeding the limit, it overwrites the area storing the previous item of input data. The status monitor and application notification functions are provided, which check and report the state in which data has been written to certain areas of memory.

The ring memory is used to obtain data where conversion has stopped due to some event, usually without obtaining data in the normal state.



Repeat

"Repeat" indicates the number of repetitions of sampling to be executed, from when the sampling start condition is satisfied until the end of sampling, including delayed sampling.

The number of repetitions is set by means of software, for which conversion is repeated. You can set an infinite number of repetitions, in which case the conversion is terminated by the software abort command.

Input data items are stored to the memory sequentially. The repetition state can be subject to status monitoring and application notification.

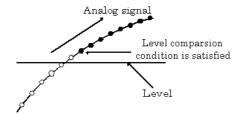
Clock

The sampling clock controls the sampling frequency. You can select either the internal sampling clock, external sampling clock.

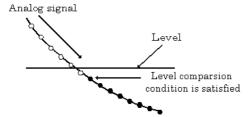
- Internal sampling clock
 The clock signal from the on-board clock generator is used.
- External sampling clock
 The edge of the digital signal input from an external device is used for the sampling clock.

Start Condition

The condition for controlling the start of sampling can be selected from among software, input data comparison, an external trigger. The conditions for controlling the start and stop of sampling are completely independent of each other; they can be set separately.


Software

The board starts sampling and storing input data to memory immediately after the operation start command is issued.


- Input data comparison

When the operation start command is issued, the board compares the analog signal input through a specified channel to the value of the preset comparison level. If the analog signal satisfies the condition, the board starts storing input data.

Level comparison conditions are set as two conditions: level and direction.

The above sketch shows that the level comparison condition is satisfied in the rising direction. The start condition is satisfied when the analog signal at the specified channel passes the comparison level in the rising direction. Input data items are stored to memory, starting with those at solid dots.

The above sketch shows that the level comparison condition is satisfied in the falling direction. The start condition is satisfied when the analog signal at the specified channel passes the comparison level in the falling direction. Input data items are stored to memory, starting with those at solid dots.

If you set the level comparison directions to both directions, the start condition is satisfied when the analog signal passes the level both in the rising and falling directions.

- External trigger

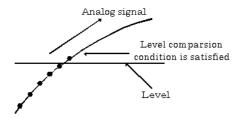
The board starts waiting for an external control signal as soon as the operation start command is output.

Sampling and data transfer to memory start when the specified edge (rising edge or falling edge) is input from the external control signal.

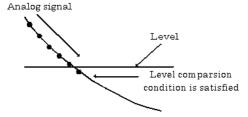
Stop condition

The condition for controlling the stop of sampling can be selected from among the last sampling count, input data comparison, an external trigger, and software abort.

The board stops sampling whenever an error occurs irrespective of the stop condition setting.


- Last sampling count

The board stops sampling after storing input data to memory for the specified number of times of sampling.


- Input data comparison

Once the board has started sampling, it compares the analog signal input through a specified channel to the value of the preset comparison level. If the analog signal satisfies the condition, the board stops sampling.

Level comparison conditions are set as two conditions: level and direction.

The above sketch shows that the level comparison condition is satisfied in the rising direction. The stop condition is satisfied when the analog signal at the specified channel passes the comparison level in the rising direction. Input data items are stored to memory, ending until those at solid dots.

The above sketch shows that the level comparison condition is satisfied in the falling direction. The stop condition is satisfied when the analog signal at the specified channel passes the comparison level in the falling direction. Input data items are stored to memory, ending until those at solid dots

If you set the level comparison directions to both directions, the start condition is satisfied when the analog signal passes the level both in the rising and falling directions.

- External trigger

The board starts waiting for an external control signal after the specified number of samples have been performed. Sampling stops when the specified edge (rising edge or falling edge) is input from the external control signal.


Delay

Delayed sampling is performed after the sampling stop condition is satisfied.

When a sampling stop condition other than the software abort command is satisfied, the board performs sampling for the specified number of times of delayed sampling to store input data to memory.

If you set the number of times of delayed sampling to 0, the board stops sampling the moment the sampling stop condition is satisfied.

Sampling Stop Condition Satisfied

Event

"Event" works as a function for reporting the occurrence of a certain board state to the application. The following events can be used in combination depending on the specifications and purpose of the application.

- "AD conversion start condition satisfied" event
 This event occurs when the AD conversion start condition is satisfied. The event is nullified when the conversion start condition is "software".
- "Repeat end" event
 This even occurs whenever a repetition is completed.
- "End of device operation" event
 This event occurs when the entire operation including repetitions is completed.
- "Stored specified sampling times" event
 This event occurs when sampling has been performed for the number of times set by software.
 This event can only be used in device buffer mode.
- Overflow event

This event occurs at an attempt to store input data with the memory full.

- Sampling clock error event

This event occurs when conversion stops as an error occurs due to a sampling clock period that is too short.

- AD conversion error event

This event occurs when conversion stops due to an AD conversion error.

2. Starting/Stopping Operation

Sampling is started by the software command.

Once started, sampling can be stopped by the software command at any timing.

3. Monitoring the Status and Acquiring Data

Software commands are used to monitor the operation status of the device and to acquire input data from memory. Status monitoring and data acquisition can be performed even during sampling.

Status

The current state of the device can be checked by obtaining the device status.

The following types of device status are available:

Device operating

The "device operating" status remains ON, after the execution of the sampling start command until the board completes conversion, aborts operation due to an error, or stops sampling in response to the command.

- Waiting for start trigger

This status remains ON, after the board starts sampling until the start trigger is input, if the conversion start condition is an external trigger or level comparison. The status is set to OFF when the input trigger is input to start conversion.

The status is set to ON whenever the board enters the conversion start wait status even when repeated operation has been set.

- Specified sampling data stored

This status is set to ON when input data stored in memory has reached the amount corresponding to the preset number of times of sampling.

If the memory format is FIFO, the status is set to OFF when the amount of input data in the memory falls below the value corresponding to the preset number of times of sampling as data is acquired.

Once the status is set to ON when the memory format is ring, it remains ON until it is reset.

Overflow

An overflow error occurs when an attempt is made to store input data to memory while it has been full of input data.

When the memory format is FIFO, the board stops conversion.

When the memory format is ring, the board continues conversion while overwriting existing data with new one.

- Sampling clock error

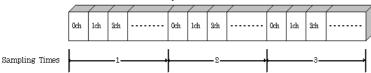
This error occurs when the sampling clock period is too short.

- AD conversion error

If the "device operating" status remains ON (without terminating conversion) for an extended period of time, the driver regards that state as an operation error and sets this status to ON. This error stops sampling.

Sampling

The number of sampled items of input data stored in memory can be obtained by the software command. This command can only be used in device buffer mode.


Repeat

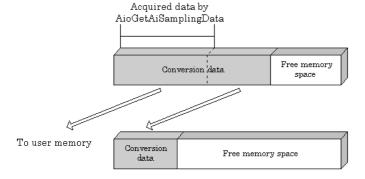
The current repeat count can be obtained by the software command.

Data acquisition

When using the device buffer, the conversion data stored in memory can be retrieved using a software command.

The figure below shows the correspondence between the sampling count and the conversion channel for the conversion data stored in memory.

Input data is acquired differently depending on the memory format used.


- Data acquisition in FIFO format

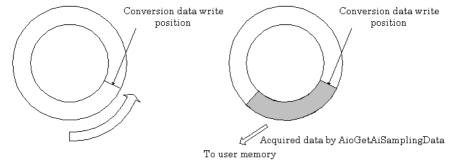
When FIFO memory is used, the oldest data is always read first.

The following sketch shows an image of data acquisition in FIFO format.

When data is acquired from the memory, the free memory space increases by that data size. When data is acquired next, the oldest one of the existing data items is taken from the memory in the same way.

The FIFO memory deletes data once that data is acquired.

- Data acquisition in ring format


When ring memory is used, data is read always with respect to the current input data write position.

The following sketch shows an image of data acquisition in ring format.

The sampling count obtained is always the number of times of sampling for up to the latest data (shaded portion below).

The larger the number of samples taken, the older the data item acquired first.

As the ring memory retains data even after that data is acquired, you can fetch the same data any number of times.

Input data

The following equation represents the relationship between input data and voltage.

Voltage = Input data x (Max. range value – Min. range value) / Resolution + Min. range value

The value of resolution for the 16-bit device is 65536.

The table below shows the relationship between input data and voltage in the ± 10 -V range.

Voltage	Conversion data (16-bit)
+9.99970V	65535
:	:
+0.00030V	32769
0V	32768
-0.00030V	32767
:	:
-10.000V	0

Ex.: When input data 49152 is input at a resolution of 16-bit in the \pm 10-V range Voltage = 49152 x (10 - (-10)) \div 65536 + (-10) = 5.0

4.Reset

Various states can be reset by executing the following reset commands:

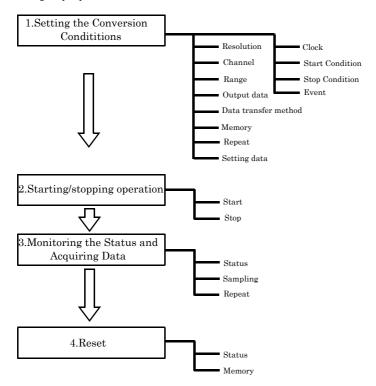
Status

This command resets the sampling clock error status and AD conversion error status.

Memory

This can only be used when the transfer mode is set to device buffer mode.

This command resets the following memory related states.


- Resets the conversion data in memory.
- Resets the repeat count to 0.
- Resets the sampling count to 0 when a stop trigger is input.
- Resets the buffer overflow status.
- Resets the status information for the specified data save count.

Analog Output Function

The board converts digital data to analog signals according to the resolution.

You can set a variety of conditions for analog output, including the output channel, sampling period, and sampling start/stop conditions.

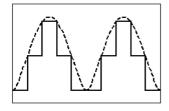
Analog output processes are classified as follows:

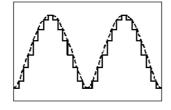
^{*} This function is available to the AIO-160802LI-PE and AO-1604LI-PE.

1. Setting the Conversion Conditions

First, set the conditions for executing analog output.

Resolution


"Resolution" signifies the number of bits used by an analog output device to represent analog signals.


The higher the resolution, the more finely the voltage range is segmented, allowing the device to convert digital values to analog equivalents more precisely.

A device with a resolution of 12-bit divides the range width into 4096 segments.

When the device covers the range of 0 - 10V, the minimum unit of converted voltages is $10 \div 4096 \approx 2.44 \text{mV}$.

If the device has a resolution of 16-bit, it is $10 \div 65536 \approx 0.153 \text{mV}$ instead.

Low Resolution Board

High Resolution Board

AIO-160802LI-PE : The resolution is 16-bit.
AI-1616LI-PE : The function is not available.
AO-1604LI-PE : The resolution is 16-bit.

Channel

"Channel" represents each channel No. of analog output signal.

For channel numbers, see "How to connect the connectors" to "Connector Pin Assignment" in Chapter 3 "External Connection".

The channel selection specifies the channel number or the number of channels (channel consecutive from channel 0) in which it wants to convert DA.

Range

"Range" means the range of voltages at which analog output can be performed.

Software setup of the range is not required as this board uses a fixed range of voltages.

AIO-160802LI-PE : ±10V

AI-1616LI-PE : The function is not available.

AO-1604LI-PE : $\pm 10V$

Output data

Output data = ((Voltage - Min. range value) x Resolution) / (Max. range value - Min. range value)

The value of resolution for the 16-bit device is 65536.

The table below shows the relationship between output data and voltage in the ± 10 -V range.

Voltage	Output data(16-bit)
+9.99970V	65535
:	:
+0.00030V	32769
0V	32768
-0.00030V	32767
:	:
-10.000V	0

Ex.: When 3V is output at a resolution of 16-bit in the ± 10 -V range

Output data =
$$(3 - (-10)) \times 65536 \div (10 - (-10))$$

= $42598.4 *$

* The value that can be set as output data at this time is an integer. Select "42598" or "42599" as the output data.

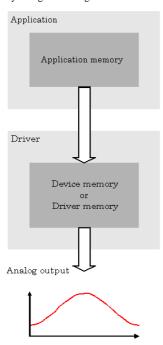
The analog signal corresponding to the output data contains an error as follows:

- Output data "42598" converted to: 2.9998 V
- Output data "42598" converted to: 3.0001 V

This error is a consequential error occurring when output data is obtained from an expected analog value.

Data transfer method

A device buffer mode is available, which uses the device's or driver's conversion data storage memory.


- Device buffer mode

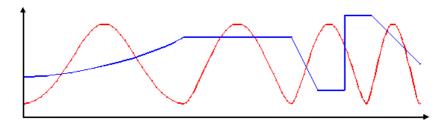
The application output data is first stored in the device buffer (memory on the device itself or in the driver).

When conversion starts, the device starts outputting the output data.

The device buffer can operate as FIFO or RING memory.

The device buffer mode provides a function that allows the number of items of conversion data using the number of sampling times as a unit to set the number of items of conversion data directly using the voltage.

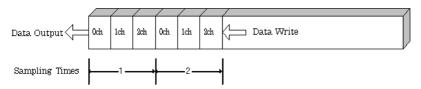
Device buffer mode

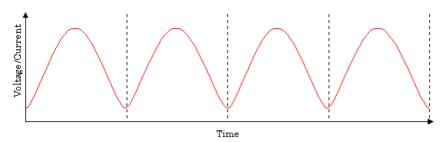

Memory format

This board uses device buffer transfer mode; it does not require software setup of the memory format.

Device buffer mode

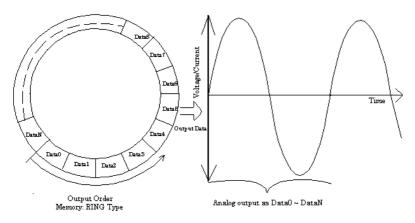
- FIFO format


Use FIFO format if you wish to output a continuous arbitrary analog output like that shown below.


When using FIFO format, writing of conversion data to memory is always performed from after the most recent data and DA conversion is performed on the oldest data in memory.

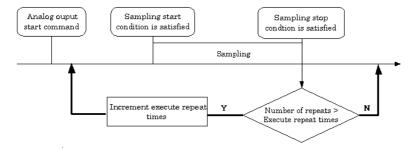
You can write to memory during analog output operation.

An error occurs if the volume of data exceeds the memory size. However, this error does not stop analog output if it is in progress.


- Ring format
Use ring format if you wish to output a repeated pattern like that shown below.

When using ring format, write the data for one complete cycle of the output waveform before starting operation.

You cannot write to the memory during its operation of analog output.

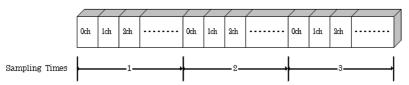

DA conversion data is output continuously in the sequence in which the ring format data is stored.

* Although the figure shows a single analog output channel, output from multiple channels is also possible.

Repeat

You can specify a repeat count to perform sampling for a specified number of times.

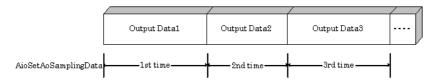
Memory must be set to ring format if a number of repetitions is to be specified.


(The number of repetitions cannot be specified for FIFO memory format.)

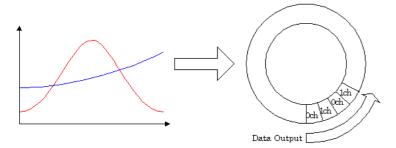
The number of repetitions is set by software and sampling is repeated for the specified number of times. You can also specify that operation continue indefinitely. If set to repeat indefinitely, analog output operation is stopped by outputting an analog output stop command by software.

Setting data

Use a software command to save the data in memory.


The figure below shows the relationship between the conversion data stored in memory and the sampling count and conversion channels.

The procedure for setting the conversion data is different depending on the memory format being used.


Procedure for FIFO format

When using FIFO format, setting data to memory is always performed from the most recent data. New data can be added during conversion.

- Procedure for RING format

When using ring format, a ring memory area large enough for the data to be set is reserved. Data cannot be modified during DA conversion.

Clock

The sampling clock controls the sampling frequency. You can select either the internal sampling clock, or external sampling clock. The sampling clock is selected by means of software.

- Internal sampling clock
 The clock signal from the on-board clock generator is used.
- External sampling clock
 The edge of the digital signal input from an external device is used for the sampling clock.

Start Condition

The condition for controlling the start of sampling can be selected from among software, external trigger. The conditions for controlling the start and stop of sampling are completely independent of each other; they can be set separately.

- Software

The board starts sampling and storing input data to memory immediately after the operation start command is issued.

- External trigger

The board starts waiting for an external control signal as soon as the operation start command is output.

Sampling and data transfer from memory start when the specified edge (rising edge or falling edge) is input from the external control signal.

Stop Condition

The condition for controlling the stop of sampling can be selected from among the last sampling count, an external trigger, and software abort.

The board stops sampling whenever an error occurs irrespective of the stop condition setting.

- Last sampling count

The board stops sampling after storing input data to memory for the specified number of times of sampling.

- External trigger

The board starts waiting for an external control signal after the specified number of samples have been performed. Sampling stops when the specified edge (rising edge or falling edge) is input from the external control signal.

Software

Sampling continues indefinitely in this mode. Sampling only stops in response to a software command or an error.

Event

"Event" works as a function for reporting the occurrence of a certain board state to the application. The following events can be used in combination depending on the specifications and purpose of the application.

"DA conversion start condition satisfied" event

This event occurs when the DA conversion start condition is satisfied. The event is nullified when the conversion start condition is "software".

- "Repeat end" event

This even occurs whenever a repetition is completed.

- "End of device operation" event

This event occurs when the entire operation including repetitions is completed.

- "Specified number of output samples complete" event

This event occurs when the number of output samples specified by software have been completed. This event is used when the device buffer mode is used for data transfer.

- Specified number of transfers event

This event occurs each time a specified number of samples (set by software) has been completed. When FIFO format is used, the event occurs when the remaining number of samples falls below a specified level. The event occurs repeatedly as long as this condition is satisfied.

When ring memory format is used, the event occurs when the number of samples output from memory reaches a specified value. The event occurs for the specified number of repetitions.

This event is used when the user buffer mode is used for data transfer.

Sampling clock error event

This event occurs when conversion stops as an error occurs due to a sampling clock period that is too short.

- DA conversion error event

This event occurs when conversion stops due to an DA conversion error.

2. Starting/Stopping Operation

Analog output operation is started by a software command (the analog output start command). Similarly, you can stop analog output at any time using a software command (the analog output stop command).

3. Monitoring the Status and Acquiring Data

You can use a software command to check the status of analog output operation and of the output data stored in memory.

Status

The current state of the device can be checked by obtaining the device status.

The following types of device status are available:

- Device operating

The "device operating" status remains ON, after the execution of the sampling start command until the board completes conversion, aborts operation due to an error, or stops sampling in response to the command.

- Waiting for start trigger

This status remains ON, after the board starts sampling until the start trigger is input, if the conversion start condition is an external trigger or level comparison. The status is set to OFF when the input trigger is input to start conversion.

The status is set to ON whenever the board enters the conversion start wait status even when repeated operation has been set.

Specified number of data outputs

This status turns ON when the output data set in memory has reached a predefined number of samples.

- Sampling clock error

This error occurs when the sampling clock period is too short.

DA conversion error

If the "device operating" status remains ON (without terminating conversion) for an extended period of time, the driver regards that state as an operation error and sets this status to ON. This error stops sampling.

Sampling

The number of sampled items of output data transferred from in memory can be obtained by the software command.

This command can only be used in device buffer mode.

4.Reset

Various states can be reset by executing the following reset commands:

Status

This command resets the sampling clock error status and AD conversion error status.

Memory

This can only be used when the transfer mode is set to device buffer mode.

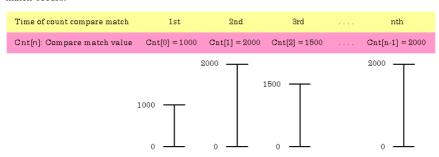
This command resets the following memory related states.

- Resets the conversion data in memory.
- Resets the repeat count to 0.
- Resets the sampling count to 0 when a stop trigger is input.
- Resets the status information for the specified data save count.

Counter Function

1. Setting the Operating Conditions

This specifies the conditions for counter operation.


Operating conditions

The basic operation of the counter is to count an external input signal.

The counter includes a function to detect a count match and perform a specified operation when the current count value reaches a preset count value.

Compare count values

The compare count load function automatically loads the next compare count value when a count match occurs.

The figure above shows an example of using the compare count load function.

After the counter starts, the first count match occurs when the count reaches 1000.

When the count reaches 1000, the counter value at which the second compare count match is to occur (2000) is set.

This continues with the next value from the array being set each time a count match occurs.

After the final value from the array is loaded, operation can start again from the beginning of the array.

Alternatively, loading can be halted (in which case, the compare count value remains at 2000).

Digital filter Input signal

The external clock can be used as the counter input signal.

Digital filter

A digital filter can be used on external input bits.

The filter time can be set to "don't use", 1µs by software.

Event

The event function notifies the application when something occurs on the device.

The following events can be used as required.

Compare count match event

This event is triggered when a compare match occurs on the counter.

Count overrun event

This event is triggered when a counter overrun occurs.

Counter operation error

This event is triggered when a counter operation error causes the counter to stop.

2. Starting/Stopping Operation

Starting and stopping the counter are performed using software commands.

Once the counter has started, it can be stopped at any time by a software command.

3. Monitoring the Status and Acquiring Data

Software commands can be used to monitor the device operating status and read counter data. Status monitoring and data acquisition can both be performed while the counter is running.

Status

The current state of the device can be checked by obtaining the device status.

The following types of device status are available:

- Counter operating

The device operating status is ON from the time the operation start command is executed until operation stops due to a stop command or error.

Compare count match

The compare count match status turns ON when a count match occurs after the counter is started. The status is turned OFF by the status reset command.

- Overrun

The overrun status turns ON if another count match occurs when the compare count match status is already ON. The status is turned OFF by the status reset command.

Even if the overrun status turns ON, this does not stop the counter.

Counter operation error

Execution of driver processing may not be able to keep up if multiple count match events occur within a short time period.

In this case, the counter operation error status turns ON and counter operation stops.

Data acquisition

The current count value can be read using a software command.

4. Reset

Various states can be reset by executing the following reset commands:

Counter reset

Resets the counter. This restores the counter to its state after power on.

Status

Resets the compare count match status and overrun status.

Digital Input Function

Input bit

Individual digital input points are called input bits.

When the number of input points of a device is 4, the bits are determined as bit 0 - bit 3.

Input in Bits

The state 1 (ON) or 0 (OFF) of each input bit can be obtained by specifying the bit.

Input in Bytes

Individual input bits can be input in byte units.

When the number of input points of the device is 4, the individual input bits are arranged as shown below and the byte data to be input is a value between 0 and 15 depending on the states of the bits.

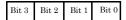
EX. Input of bit 3 (OFF), bit 2 (ON), bit 1 (OFF), bit 0 (ON) Byte data = 05(5H)

Discount Objects

Bit 3	Bit 2	Bit 1	Bit 0
0(OFF)	1(ON)	0(OFF)	1(ON)

Digital filter

A digital filter can be used on the input bits.


The filter time can be set to "don't use", 1µs by software.

Digital Output Function

Output bit

Individual digital output points are called output bits.

When the number of output points of a device is 4, the bits are determined as bit 0 - bit 3.

Output in Bits

The state of each output bit can be changed to ON or OFF by specifying the bit and setting it to 1 or 0.

Output in Bytes

Individual output bits can be output in byte units.

When the number of output points of the device is 4, the individual output bits are arranged as shown below and byte data to be output is a value between 0 and 15.

Ex. Output of bit 3 (ON), bit 2 (OFF), bit 1 (ON), bit 0 (OFF) Byte data = 10(AH)

Bit 3	Bit 2	Bit 1	Bit 0
1(ON)	0(OFF)	1(ON)	0(OFF)

5. About Software

Bundled disk Directory Structure

\	
- Autorun.exe	Installer Main Window
Readmej.html Readmeu.html	Version information on each API-TOOL (Japanese) Version information on each API-TOOL (English)
	Each installer
—HELP —Aio —Cnt —	HELP file
—INF —WDM —Win2000 —Win95	Each INF file for OS
linux cnt dio 	Linux driver file
Readme	Readme file for each driver
. —Release —API_NT —API_W95	Driver file on each API-TOOL (For creation of a user-specific install program)
- UsersGuide	Hardware User's Guide (PDF files)

About Software for Windows

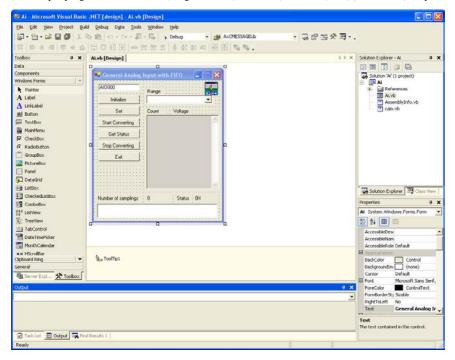

The bundled disk "Driver library API-PAC(W32)" contains the functions that provide the following features:

- Analog input or output through arbitrary channels
- Analog input at arbitrary intervals using the internal or external sampling clock
- Simultaneous monitoring of the termination of analog input sampling, buffer memory usage, and interrupt events such as occurrences of errors
- Driver option check using a demo driver even without the board installed

For details, refer to the help file. The help file provides various items of information such as "Function Reference", "Sample Programs", "Tutorial", "FAQs" and "Troubleshooting". Use them for program development and troubleshooting.

Accessing the Help File

- (1) Click on the [Start] button on the Windows taskbar.
- (2) From the Start Menu, select "Programs" "CONTEC API-PAC(W32)" "AIOWDM" "API-AIO(WDM) HELP" to display help information.



Using Sample Programs

Sample programs are provided for each of the basic operations. You can use these to check the operation of the board and as a reference when writing your own programs.

To use the sample programs, specify the device name in the property page for the program.

The sample programs are stored in \Program Files\CONTEC\API-PAC(W32)\AIOWDM\Samples.

Running a Sample Program

- (1) Click on the [Start] button on the Windows taskbar.
- (2) From the Start Menu, select "Programs" "CONTEC API-PAC(W32)" "AIOWDM" "SAMPLE...".
- (3) A sample program is invoked.

Sample Programs - Examples

Analog input

Simple sample program

SingleAi Perform single analog input from specified channel
 MultiAi Perform single analog input from multiple channels

Device buffer

Ai Perform standard analog input using a FIFO buffer

- AiPoll Perform standard analog input by polling

- AiEx Perform analog input for multiple channels using a FIFO buffer

- AiExt Perform analog input using an external clock

- AiTrg Perform analog input using an external trigger to start and stop operation

- AiLevel1 Use a level trigger to start analog input
 - AiLevel2 Use a level trigger to stop analog input

- Ai2 Perform standard analog input using more than one device

- AiCall Perform analog input using a callback routine

- AiSync1 Perform multi-channel analog input using two devices

User buffer

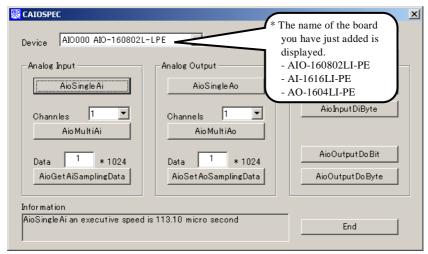
- AiUser1 Perform analog input for a specified duration using a user buffer

AiUser2 Perform analog input indefinitely using a user buffer

Digital input/output

DioBit Perform digital I/O using bit values
 DioByte Perform digital I/O using port values

Others

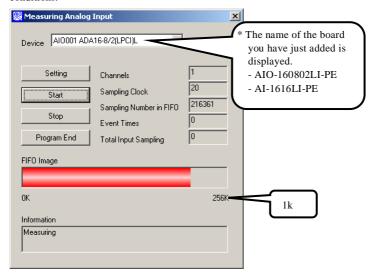

- Convert Data conversion

- Multi1 Synchronized analog I/O

Usage of Utility Program

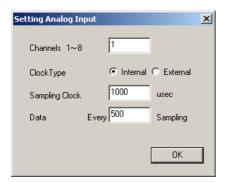
Program for Measurement of Function Execution Speed

The execution time of some main functions can be measured in a function execution speed measurement program. To use a function execution speed measurement program, click the [execution time measurement] button in the diagnostic program.


Procedure

- (1) Chose the measure device from device list.
- (2) Click the button written with the function name to measure the execution speed of the function. Please choose from a list the number of channels used for conversion in function AioMultiAi.
- (3) End the application with an [end] button.

Analog Input Measurement Tool


It is an analog input measurement utility to carry out infinity sample in the FIFO memory. Once the conversion data of memory accumulates to a certain quantity, the event occurs and data of the memory is acquired. Data in the FIFO memory can be confirmed visually.

The number of channels used, the internal/external clock, the conversion speed, and the sampling frequency at which an event generates can be set. Since the notification of a sampling clock error event is sent, please make use of it for the conversion spec measurement under various conversion conditions.

Procedure

- (1) Chose the device name of the device to be used from the upper left combo box, and click the setting button.
- (2) The conversion conditions are set on the screen of the analog input setting. Once an input is done at the sampling frequency specified as data taking-in sampling, an event occurs and data will be acquired. Click the OK button to finish setting the conditions, and returns to former screen.

(3) Start the measurement with measurement start button. The various states during the conversion are displayed.

The number of the samplings in FIFO is:

It is conversion data taken in the memory. This can be visually checked in a "memory image".

Event generation sampling frequency:

When the number of input sampling in FIFO reaches this frequency, the event generates.

Total input sampling frequency:

It is the total number of samplings for application in the memory.

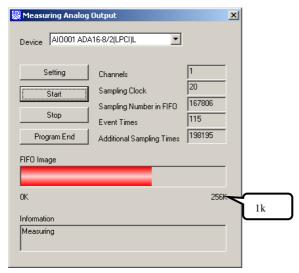
Measurement may stop by the following errors.

Sampling clock error:

It means that the conversion speed is too fast and the driver processing is not in time when converting at the internal clock.

The cycle of the clock is too fast when converting it at the external clock. Moreover, the cause by noise etc. is also concerned.

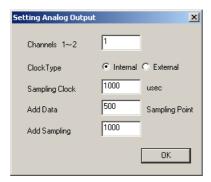
Buffer overflow:


The memory overflows since the conversion speed is too fast compared with the one at which data is inputted.

(4) Click the "stop" button, and measurement stops.

Analog Output Measurement Tool

It is an analog output measurement utility to carry out infinity sample in the FIFO memory. Once the conversion data of memory accumulates to a certain quantity, the event occurs and new output data is added. Data in the FIFO memory can be confirmed visually.


The number of channels used, the internal/external clock, the conversion speed, the sampling frequency at which an event generates and number of the samplings to be added can be set. Since the notification of a sampling clock error event is sent, please make use of it for the conversion spec measurement under various conversion conditions.

Procedure

- (1) Chose the device name of the device to be used from the upper left combo box, and click the setting button.
- (2) The conversion conditions are set on the screen of the setting analog output.

Once an output is done at the sampling frequency specified as data setting sampling frequency, an event occurs and data will be added. Click the OK button to finish setting the conditions, and returns to former screen.

(3) Start the measurement with measurement start button. The various states during the conversion are displayed.

The number of the samplings in FIFO is:

It is conversion data set in the memory. This can be visually checked in a "memory image".

Event generation sampling frequency:

When the number of unoutput sampling in FIFO reaches this frequency, the event generates.

Adding sampling frequency:

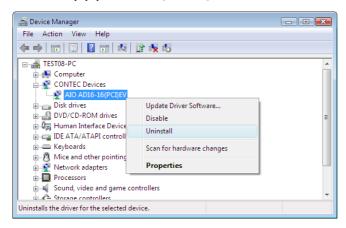
It is the number of samplings of output data to be added during the event.

Measurement may stop by the following errors.

Sampling clock error:

It means that the conversion speed is too fast and the driver processing is not in time when converting at the internal clock.

The cycle of the clock is too fast when converting it at the external clock. Moreover, the cause by noise etc. is also concerned


(4) Click the "stop" button, and measurement stops.

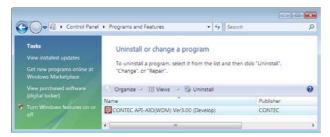
Uninstalling the Driver Libraries

The method used to uninstall API-PAC(W32) differs depending on which OS you are using. Follow the procedure given below.

Uninstall procedure for Windows Vista

- < Uninstalling the device driver >
- Run Device Manager. From [My Computer] [Control Panel], select [System] and then select the [Device Manager] tab.
 - (You can also open Device Manager by right clicking on My Computer and selecting Properties.)
- All of the hardware that uses the API-TOOL(WDM) driver is registered under the CONTEC Devices tree.
 - Open the device tree, select the hardware to uninstall, and then right-click the hardware. From the popup menu, select [Uninstall].

3. A dialog box opens asking you to confirm whether to uninstall. Select the [Delete the driver software for this device] checkbox, and then click [OK].



< Uninstall the development environment >

Use [My Computer] - [Control Panel] - [Programs and Features] to uninstall the development environment.

Select [CONTEC API-***(WDM) VerX.XX (development environment)] and then click [Uninstall].

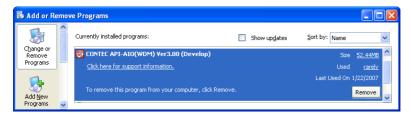
* "***" contains the driver category name (AIO, CNT, DIO, SMC, etc.).

Uninstall procedure for Windows XP and Windows 2003 Server

< Uninstall the device driver >

Use [My Computer] - [Control Panel] - [Add and Remove Programs] to uninstall the device driver. Select [Windows driver package - CONTEC (****)] and then click [Change/Remove].

* "***" contains the driver category name (caio, ccnt, cdio, csmc, etc.).



< Uninstall the development environment >

Use [My Computer] - [Control Panel] - [Add and Remove Programs] to uninstall the development environment.

Select [CONTEC API-***(WDM) VerX.XX (development environment)] and then click [Change/Remove].

* "***" contains the driver category name (AIO, CNT, DIO, SMC, etc.).

Uninstall procedure for Windows Me

< Uninstall the device driver >

Use [My Computer] - [Control Panel] - [Add and Remove Applications] to uninstall the device driver. Select [CONTEC API-***(WDM) driver] and then click [Add/Remove].

- * "***" contains the driver category name (AIO, CNT, DIO, SMC, etc.).
- < Uninstall the development environment >

Use [My Computer] - [Control Panel] - [Add and Remove Programs] to uninstall the development environment.

Select [CONTEC API-***(WDM) VerX.XX (development environment)] and then click [Add/Remove].

* "***" contains the driver category name (AIO, CNT, DIO, SMC, etc.).

Uninstall procedure for Windows 98, 98SecondEdition

< Uninstall the device driver >

Use [My Computer] - [Control Panel] - [Add and Remove Applications] to uninstall the device driver. Select [CONTEC API-***(WDM) driver] and then click [Add/Remove].

- * "***" contains the driver category name (AIO, CNT, DIO, SMC, etc.).
- < Uninstall the development environment >

Use [My Computer] - [Control Panel] - [Add and Remove Applications] to uninstall the development environment.

Select [CONTEC API-***(WDM) VerX.XX (development environment)] and then click [Add/Remove].

* "***" contains the driver category name (AIO, CNT, DIO, SMC, etc.).

About Software for Linux

The Linux version of analog I/O function driver, API-AIO(LNX), provides functions that execute the following features:

- The analog input/output of a specified channel can be done.
- It is possible to operate as a set parameter to the analog input/output board is preserved by the default value, and the setting of the parameter doesn't exist.

For details, refer to the help file. The help file provides various items of information such as "Function Reference", "Sample Programs", and "FAQs". Use them for program development and troubleshooting.

Driver Software Install Procedure

The Linux version for analog I/O driver, API-AIO(LNX), is supplied as a compressed file /linux/aio/caioXXX.tgz on the bundled disk. (Note: XXX represents the driver version.)

Mount the bundled disk as shown below, copy the file to an arbitrary directory, and decompress the file to install the driver.

For details on using the driver, refer to readme.txt and the help file in HTML format extracted by installation.

To install the driver, log in as a superuser.

Decompression and setup procedure

```
# cd
# mount /dev/cdrom /mnt/cdrom
                                                   Mount the bundled disk.
# cp /mnt/cdrom/linux/aio/caioXXX.tgz ./
                                                   Copy the compressed file.
# tar xvfz caioXXX.tqz
                                                   Decompress the compressed file.
 . . . . . . . . . . . . . . . .
# cd contec/caio
# make
                                                    Compile the file.
 . . . . . . . . . . . . . . . .
# make install
                                                    Install.
 . . . . . . . . . . . . . . . .
# cd config
# ./config
                                                   Set up the board to be used.
 ..... Set as follows.....
# ./contec_aio_start.sh
                                                   Start the driver.
# cd
```

Accessing the Help File

- (1) Invoke a web browser in your X-Window environment.
- (2) In the browser, open diohelp.htm in the contec/caio/help directory.

Using Sample Programs

Sample programs have been prepared for specific basic applications.

Sample programs for each language are contained in the contec/caio/samples directory. For compiling them, refer to the manual for the desired language.

Uninstalling the driver

To uninstall the driver, use the uninstall shell script contained in the contec/caio directory. For details, check the contents of the script.

6. About Hardware

This chapter provides hardware specifications and hardware-related supplementary information.

For detailed technical information

For further detailed technical information ("Technical Reference" including the information such as an I/O map, configuration register, etc.), visit the Contec's web site to call for it.

Hardware specification

AIO-160802LI-PE

Table 6.1. Specification (1/2)

Item	Specification
Analog input	
Isolated specification	Bus-Isolated
Input type	Single-Ended Input
Number of input channels	8ch
Input range	Bipolar ±10V
Absolute max. input voltage	±20V
Input impedance	1MΩ or more
Resolution	16bit
Non-Linearity error *1*2	±16LSB
Conversion speed	10μsec/ch*3 [100KSPS]*4
Buffer memory	1k Word
Conversion start trigger	Software / external trigger
Conversion stop trigger	Number of sampling times / external trigger/software
External start signal	Isolation TTL·level (Rising or falling edge can be selected by software)
	Digital filter (1µsec can be selected by software)
External stop signal	Isolation TTL·level (Rising or falling edge can be selected by software)
	Digital filter (1µsec can be selected by software)
External clock signal	Isolation TTL·level (Rising or falling edge can be selected by software)
Analog output	
Isolated specification	Bus-Isolated
Number of output channels	2ch
Output range	Bipolar ±10V
Absolute max. input currency	±5mA
Output impedance	1Ω or less
Resolution	16bit
Non-Linearity error *1	±5LSB
Conversion speed	10μsec [100KSPS]*4
Buffer memory	1k Word
Conversion start trigger	Software / external trigger
Conversion stop trigger	Number of sampling times / external trigger/software
External start signal	Isolation TTL·level (Rising or falling edge can be selected by software)
	Digital filter (1µsec can be selected by software)
External stop signal	Isolation TTL-level (Rising or falling edge can be selected by software)
	Digital filter (1µsec can be selected by software)
External clock signal	Isolation TTL·level (Rising or falling edge can be selected by software)

^{*1:} The non-linearity error means an error of approximately 0.1% occurs over the maximum range at 0°C and 50°C ambient temperature.

- *2: At the time of the source use of a signal which built in the high-speed operational amplifier.
- *3: The required time is indicated in the analog to digital translation of one channel. When AD of two or more channels is converted, time of the a few minutes of the channel is necessary.

 Conversion time = Number of conversion channelsx10µsec
- *4: SPS = Samplings Per Second. The number of data that can be converted in one second is shown.

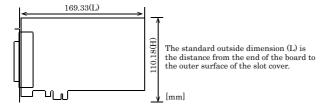


Table 6.1. Specification (2/2)

Table 0.1. Specification (2/2)			
Item	Specification		
Digital I/O			
Number of input channels	Isolated input 4ch (TTL-level positive logic)		
Number of output	Isolated input 4ch (TTL-level positive logic)		
channels			
Counter			
Number of channels	1ch		
Counting system	Up count		
Max. count	FFFFFFFh (Binary data,32bit)		
Number of external inputs	2 Isolation TTL-level (Gate/Up)		
	Gate (positive logic/level), Up (Rising edge)		
Number of external outputs	1 Isolation TTL·level Count match output (positive logic, pulse output)		
Response frequency	1MHz (Max.)		
Common section			
I/O address	64 ports		
Interruption level	Errors and various factors, One interrupt request line as INTA		
Connector	10250-52A2JL[3M]		
Power consumption	3.3VDC 1100mA (Max.)		
Operating condition	0 - 50°C, 10 - 90%RH (No condensation)		
Bus specification	PCI Express Base Specification Rev. 1.0a x1		
Dimension (mm)	169.33 (L) x 110.18(H)		
Weight	120g		

Board

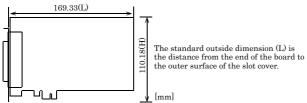
Dimensions

AI-1616LI-PE

Table 6.2. Specification

Item	Specification
nalog input	
Isolated specification	Bus-Isolated
Input type	Single-Ended Input
Number of input	16ch
channels	
Input range	Bipolar ±10V
Absolute max. input voltage	±20V
Input impedance	1MΩ or more
Resolution	16bit
Non-Linearity error *1*2	±16LSB
Conversion speed	10μsec/ch*3 [100KSPS]*4
Buffer memory	1k Word
Conversion start trigger	Software / external trigger
Conversion stop trigger	Number of sampling times / external trigger/software
External start signal	Isolation TTL-level (Rising or falling edge can be selected by software) Digital filter (1µsec can be selected by software)
External stop signal	Isolation TTL·level (Rising or falling edge can be selected by software)
External clock signal	Digital filter (1µsec can be selected by software) Isolation TTL-level (Rising or falling edge can be selected by software)
igital I/O	software)
Number of input channels	Isolated input 4ch (TTL-level positive logic)
Number of output channels	Isolated input 4ch (TTL-level positive logic)
ounter	Isolated input 4ch (11L level positive logic)
Number of channels	1ch
Counting system	Up count
Max. count	FFFFFFFh (Binary data,32bit) 2 Isolation TTL-level (Gate/Up)
Number of external inputs	Gate (positive logic/level), Up (Rising edge)
Number of external outputs	1 Isolation TTL-level Count match output (positive logic, pulse
rumber of external outputs	output)
Response frequency	1MHz (Max.)
ommon section	management (miningers)
I/O address	64 ports
Interruption level	Errors and various factors, One interrupt request line as INTA
Connector	10250-52A2JL[3M]
Power consumption	3.3VDC 850mA (Max.)
Operating condition	0 - 50°C, 10 - 90%RH (No condensation)
Bus specification	PCI Express Base Specification Rev. 1.0a x1
	169.33 (L) x 110.18(H)
Dimension (mm)	

^{*1:} The non-linearity error means an error of approximately 0.1% occurs over the maximum range at 0°C and 50°C ambient temperature.


^{*2:} At the time of the source use of a signal which built in the high-speed operational amplifier.

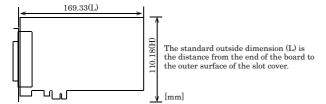
^{*3:} The required time is indicated in the analog to digital translation of one channel. When AD of two or more channels is converted, time of the a few minutes of the channel is necessary.

Conversion time = Number of conversion channels 10 uses.

^{*4:} SPS = Samplings Per Second. The number of data that can be converted in one second is shown.

Board Dimensions

AO-1604LI-PE


Table 6.3. Specification

Item	Specification
analog output	
Isolated specification	Bus-Isolated
Number of output	4ch
channels	
Output range	Bipolar ±10V
Absolute max. output	±5mA
currency	
Output impedance	1Ω or less
Resolution	16bit
Non-Linearity error *1	±5LSB
Conversion speed	10μsec [100KSPS]*2
Buffer memory	1k Word
Conversion start trigger	Software / external trigger
Conversion stop trigger	Number of sampling times / external trigger/software
External start signal	Isolation TTL-level (Rising or falling edge can be selected by
	software)
	Digital filter (1µsec can be selected by software)
External stop signal	Isolation TTL-level (Rising or falling edge can be selected by
	software)
	Digital filter (1µsec can be selected by software)
External clock signal	Isolation TTL-level (Rising or falling edge can be selected by
N: -::t -1 I/O	software)
Digital I/O	Indicated in cost Add (DDDI december 1 and a series)
Number of input channels	Isolated input 4ch (TTL-level positive logic)
Number of output channels	Isolated input 4ch (TTL-level positive logic)
ounter	1.1
Number of channels	1ch
Counting system	Up count
Max. count	FFFFFFFh (Binary data,32bit)
Number of external inputs	2 Isolation TTL-level (Gate/Up)
N 1 0 1 1 1 1	Gate (positive logic/level), Up (Rising edge)
Number of external outputs	1 Isolation TTL-level
D C	Count match output (positive logic, pulse output)
Response frequency	1MHz (Max.)
Common section	1
I/O address	64 ports
Interruption level	Errors and various factors, One interrupt request line as INTA
Connector	10250-52A2JL[3M]
Power consumption	3.3VDC 1500mA (Max.)
Operating condition	0 - 50°C, 10 - 90%RH (No condensation)
Bus specification	PCI Express Base Specification Rev. 1.0a x1
Dimension (mm)	169.33 (L) x 110.18(H)
Weight	120 g

^{*1:} The non-linearity error means an error of approximately 0.1% occurs over the maximum range at 0° C and 50° C ambient temperature.

^{*2:} SPS = Samplings Per Second. The number of data that can be converted in one second is shown.

Board Dimensions

Block Diagram

Figure 6.1 - 6.3 is a circuit block diagram of this board.

AIO-160802LI-PE

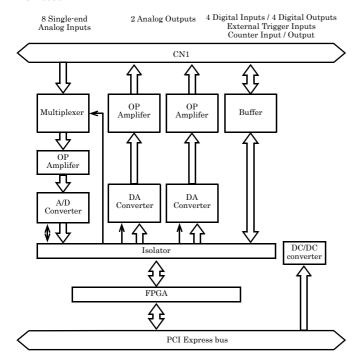


Figure 6.1. Block Diagram

AI-1616LI-PE

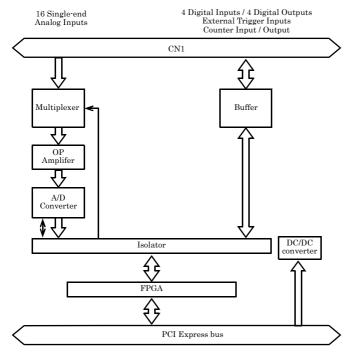


Figure 6.2. Block Diagram

AO-1604LI-PE

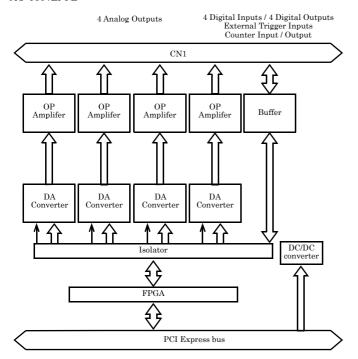


Figure 6.3. Block Diagram

Control Signal Timings

Control Signal Timings for Analog Input

Figures 6.4, 6.5, 6.6, and Table 6.4 show the control signal timings for the analog input function.

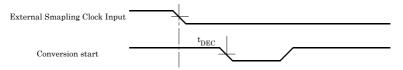


Figure 6.4. Timing Chart of External Sampling Clock

Figure 6.5. Timing Chart of Sampling Start Control Signal

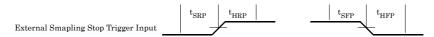


Figure 6.6. Timing Chart of Sampling Stop Control Signal

Table 6.4. Control Signal Timings

Parameter		Time	Unit
Delay from external sampling clock cycle to first channel A/D conversion start pulse	tdec	200	nsec
Set up time of sampling start (Rising edge)	tsrs	100	nsec
Hold time of sampling start (Rising edge)	thrs	100	nsec
Set up time of sampling start (Falling edge)	tsfs	100	nsec
Hold time of sampling start (Falling edge)	thes	100	nsec
Set up time of sampling stop (Rising edge)	tsrp	100	nsec
Hold time of sampling stop (Rising edge)		100	nsec
Set up time of sampling stop (Falling edge)		100	nsec
Hold time of sampling stop (Falling edge)	thep	100	nsec

The times listed in Table 6.4 are for standard operating conditions. The values of the signals for which digital filter can be set are the values without setting of digital filter.

Control Signal Timings for Analog Output

Figures 6.7, 6.8, 6.9, and Table 6.5 show the control signal timings for the analog output function.

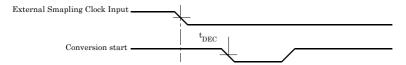


Figure 6.7. Timing Chart of External Sampling Clock (Analog output)

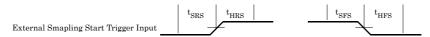


Figure 6.8. Timing Chart of Sampling Start Control Signal

Figure 6.9. Timing Chart of Sampling Stop Control Signal

Table 6.5. Control Signal Timings

Parameter	Symbol	Time	Unit
Delay from external sampling clock to actual start	tdec	300	nsec
Settling time	tws	10000	nsec
Set up time of sampling start (Rising edge)	tsrs	100	nsec
Hold time of sampling start (Rising edge)	thrs	100	nsec
Set up time of sampling start (Falling edge)		100	nsec
Hold time of sampling start (Falling edge)	thes	100	nsec
Set up time of sampling stop (Rising edge)	tsrp	100	nsec
Hold time of sampling stop (Rising edge)	thrp	100	nsec
Set up time of sampling stop (Falling edge)		100	nsec
Hold time of sampling stop (Falling edge)	thfp	100	nsec

The times listed in Table 6.5 are for standard operating conditions. The values of the signals for which digital filter can be set are the values without setting of digital filter.

Control Signal Timings for Counter

Figures 6.10, 6.11, and Table 6.6 show the control signal timings for the analog input function.

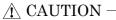
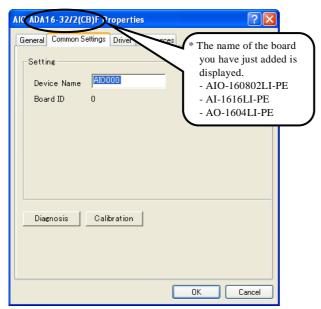

Figure 6.10. Timing Chart of Counter Input Signal

Figure 6.11. Timing Chart of Counter Output Signal (Pulse output)

Table 6.6. Control Signal Timings

Parameter	Symbol	Time	Unit
Set up time of counter input signal (Rising edge)	tsrc	100	nsec
Hold time of counter input signal (Rising edge)	thrc	100	nsec
Pulse width of counter output signal	tpsc	1000	nsec


The times listed in Table 6.6 are for standard operating conditions.

About Calibration

Although this board is calibrated before shipping, you can use the calibration program to calibrate analog input and output yourself.

Starting the calibration program

Click the [Calibration] button on the property page for the device to start the calibration program.

Proceed with connecting the calibration equipment and performing the calibration in accordance with the instructions displayed by the calibration program.

Analog input calibration

Analog input calibration requires a reference voltage generator.

As the analog input has 16-bit resolution, use a reference voltage generator with a precision of at least 5 digits after the decimal point.

Calibrate one channel only for each range that you use.

Analog output calibration

Analog output calibration requires a digital multimeter.

As the analog output has 16-bit resolution, use a multimeter with a precision of at least 5 digits after the decimal point.

Calibrate each channel separately for each range that you use.

Factory setting

You can use the calibration program to restore the factory calibration settings.

Difference from ADAI16-8/2(LPCI)L, ADI16-16(LPCI)L and DAI16-4(LPCI)L

AIO-160802LI-PE, ADAI16-8/2(LPCI)L

The functions same with conventional product of ADAI16-8/2(LPCI)L are provided with the AIO-160802LI-PE. In addition, as there is compatibility in terms of connector shape and pin assignments, it is easy to migrate from the existing system. So you can use the same operating procedures as ADAI16-8/2(LPCI)L.

There are some differences in specifications as shown below.

	AIO-160802LI-PE	ADAI16-8/2(LPCI)L
Power consumption	+3.3VDC 1100mA (Max.)	+5VDC 680mA (Max.)
Bus specification	PCI Express Base Specification Rev. 1.0a x1	PCI (32-bit, 33MHz, Universal key shapes supported)
Dimension (mm)	169.33(L) x 110.18(H)	121.69(L) x 63.41(H)
Weight	120g	65g

AI-1616LI-PE, ADI16-16(LPCI)L

The functions same with conventional product of ADI16-16(LPCI)L are provided with the AI-1616LI-PE. In addition, as there is compatibility in terms of connector shape and pin assignments, it is easy to migrate from the existing system. So you can use the same operating procedures as ADI16-16(LPCI)L.

There are some differences in specifications as shown below.

	AI-1616LI-PE	ADI16-16(LPCI)L
Power consumption	+3.3VDC 850mA (Max.)	+5VDC 400mA (Max.)
Bus specification	PCI Express Base Specification Rev. 1.0a x1	PCI (32-bit, 33MHz, Universal key shapes supported)
Dimension (mm)	169.33(L) x 110.18(H)	121.69(L) x 63.41(H)
Weight	125g	65g

AO-1604LI-PE, DAI16-4(LPCI)L

The functions same with conventional product of DAI16-4(LPCI)L are provided with the AO-1604LI-PE. In addition, as there is compatibility in terms of connector shape and pin assignments, it is easy to migrate from the existing system. So you can use the same operating procedures as DAI16-4(LPCI)L.

There are some differences in specifications as shown below.

	AO-1604LI-PE	DAI16-4(LPCI)L
Power consumption	+3.3VDC 1500mA (Max.)	+5VDC 800mA (Max.)
Bus specification	PCI Express Base Specification Rev. 1.0a x1	PCI (32-bit, 33MHz, Universal key shapes supported)
Dimension (mm)	169.33(L) x 110.18(H)	121.69(L) x 63.41(H)
Weight	120g	65g

AIO-160802LI-PE AI-1616LI-PE AO-1604LI-PE User's Guide

CONTEC CO., LTD.

January 2018 Edition

3-9-31, Himesato, Nishiyodogawa-ku, Osaka 555-0025, Japan https://www.contec.com/

No part of this document may be copied or reproduced in any form by any means without prior written consent of CONTEC CO., LTD. [01192018]

 [03032008]
 Management No. A-51-543

 [01192018_rev5]
 Parts No. LYJA055