

PCI-8132
2 Axes Servo / Stepper
Motion Control Card

User’s Guide

@Copyright 2000 ADLINK Technology Inc.
All Rights Reserved.

Manual Rev. 1.00: September 10, 2000

The information in this document is subject to change without prior notice
in order to improve reliability, design and function and does not represent
a commitment on the part of the manufacturer.

In no event will the manufacturer be liable for direct, indirect, special,
incidental, or consequential damages arising out of the use or inability to
use the product or documentation, even if advised of the possibility of
such damages.

This document contains proprietary information protected by copyright. All
rights are reserved. No part of this manual may be reproduced by any
mechanical, electronic, or other means in any form without prior written
permission of the manufacturer.

Trademarks
NuDAQ, PCI-8132 are registered trademarks of ADLINK Technology Inc,
MS-DOS , Windows 95/98 , Windows NT/2000 are registered trademarks
of Microsoft Corporation., Borland C++ is a registered trademark of
Borland International, Inc. Other product names mentioned herein are
used for identification purposes only and may be trademarks and/or
registered trademarks of their respective companies.

Getting service from ADLINK
Customer Satisfaction is always the most important thing for ADLINK
Tech Inc. If you need any help or service, please contact us and get it.

ADLINKTechnology Inc.
Web Site http://www.adlink.com.tw

http://www.adlinktechnology.com

Sales & Service service@adlink.com.tw
Technical NuDAQ nudaq@adlink.com.tw
Support NuDAM nudam@adlink.com.tw
 NuIPC nuipc@adlink.com.tw
 NuPRO nupro@adlink.com.tw
 Software sw@adlink.com.tw
TEL +886-2-82265877 FAX +886-2-82265717
Address 9F, No. 166, Jian Yi Road, Chungho City, Taipei, 235 Taiwan, R.O.C.
Please inform or FAX us of your detailed information for a prompt,
satisfactory and constant service.

Detailed Company Information
Company/Organization

Contact Person

E-mail Address

Address

Country

TEL FAX

Web Site

Questions
Product Model

Environment to Use o OS
 o Computer Brand
 o M/B: ? CPU:
 o Chipset: ? BIOS:
 o Video Card:
 o Network Interface Card:
 o Other:

Challenge Description

Suggestions for ADLINK

Table of Contents • i

Table of Contents
Chapter 1 Introduction ..1

1.1 Features..4
1.2 Specifications ...5
1.3 Software Supporting...6

Chapter 2 Installation..7
2.1 What You Have..7
2.2 PCI-8132 Outline Drawing...8
2.3 Hardware Installation..9

2.3.1 Hardware configuration...9
2.3.2 PCI slot selection ..9
2.3.3 Installation Procedures ...9
2.3.4 Trouble shooting:..9

2.4 Software Driver Installation...10
2.5 CN1 Pin Assignments: External Power Input..................10
2.6 CN2 Pin Assignments: Main connector........................... 11
2.7 CN3 Pin Assignments: Simultaneous Start/Stop.............12
2.8 Jumper Setting ...13
2.9 Switch Setting...13

Chapter 3 Signal Connections..14
3.1 Pulse Output Signals OUT and DIR.................................15
3.2 Encoder Feedback Signals EA, EB and EZ17
3.3 Origin Signal ORG ..19
3.4 End-Limit Signals PEL and MEL20
3.5 Ramping-down Signals PSD and MSD............................21
3.6 In-position Signal INP ...22
3.7 Alarm Signal ALM ...23
3.8 Deviation Counter Clear Signal ERC...............................24
3.9 General-purpose Signal SVON..25
3.10 General-purpose Signal RDY ..26
3.11 Isolated Digital Output DOx ..27
3.12 Isolated Digital Input DIx...28
3.13 Pulser Input Signals PA and PB......................................29
3.14 Simultaneously Start/Stop Signals STA and STP30
3.15 Daughter Board Connector ...31
3.16 Comparison Output CMP1 and CMP232

ii • Table of Contents

Chapter 4 Operation Theorem...33
4.1 Motion Control Modes..33

4.1.1 Pulse Command Output ... 34
4.1.2 Constant Velocity Motion... 35
4.1.3 Trapezoidal Motion .. 36
4.1.4 S-curve Profile Motion .. 40
4.1.5 Linear and Circular Interpolated Motion 43
4.1.6 Home Return Mode.. 44
4.1.7 Manual Pulser Mode.. 46

4.2 Motor Driver Interface ...47
4.2.1 INP.. 47
4.2.2 ALM.. 47
4.2.3 ERC.. 48

4.3 The Limit Switch Interface and I/O Status49
4.3.1 SD... 49
4.3.2 EL.. 49
4.3.3 ORG.. 50
4.3.4 SVON and RDY.. 50

4.4 The Encoder Feedback Signals (EA, EB, EZ)50
4.5 Multiple PCI-8132 Cards Operation52
4.6 Change Speed on the Fly..53
4.7 Position Comparison ..55
4.8 Interrupt Control ...59

Chapter 5 Motion Creator..63
5.1 Main Menu ..64
5.2 Axis Configuration Window ..65
5.3 Axis Operation Windows ..68

5.3.1 Motion Status Display... 68
5.3.2 Axis Status Display.. 68
5.3.3 I/O Status Display... 69
5.3.4 Set Position Control .. 69
5.3.5 Operation Mode Control ... 69
5.3.6 Motion Parameters Control ... 70
5.3.7 Play Key Control... 70
5.3.8 Velocity Profile Selection ... 71
5.3.9 Repeat Mode.. 71

5.4 2-D Motion Windows...72
5.4.1 Linear Interpolation ... 73
5.4.2 Circular Interpolation .. 73
5.4.3 Continuous Jog .. 73
5.4.4 Incremental Jog .. 74
5.4.5 Other Control Objects... 74

Table of Contents • iii

Chapter 6 Function Library ...76
6.1 List of Functions...76
6.2 C/C++ Programming Library ...80
6.3 Initialization ..81
6.4 Pulse Input / Output Configuration83
6.5 Continuously Motion Move ...84
6.6 Trapezoidal Motion Mode..85
6.7 S-Curve Profile Motion..88
6.8 Multiple Axes Point to Point Motion90
6.9 Linear and Circular Interpolated Motion92
6.10 Interpolation Parameters Configuring.............................93
6.11 Home Return...95
6.12 Manual Pulser Motion ...96
6.13 Motion Status..98
6.14 Servo Drive Interface ..99
6.15 I/O Control and Monitoring ... 101
6.16 Position Control.. 102
6.17 Interrupt Control ... 103
6.18 Digital Input/Output Control.. 106
6.19 Position Compare Control .. 107

Chapter 7 Connection Example .. 110
7.1 General Description of Wiring....................................... 110
7.2 Connection Example with Servo Driver 113

Product Warranty/Service ... 115

How to Use This Guide
This manual is designed to help you use the PCI-8132. The manual
describes how to modify various settings on the PCI-8132 card to meet
your requirements. It is divided into seven chapters:

� Chapter 1, "Introduction", gives an overview of the product

features, applications, and specifications.
� Chapter 2, "Installation", describes how to install the PCI-8132.
� Chapter 3, "Signal Connection", describes the connectors' pin

assignment and how to connect the outside signal and devices
with the PCI-8132.

� Chapter 4, "Operation Theorem", describes detail operations of
the PCI-8132.

� Chapter 5, “Motion Creator”, describe how to utilize a Microsoft
Windows based utility program to configure and test running the
PCI-8132

� Chapter 6, " Function Library", describes high-level programming
interface in C/C++ and VB language. It helps programmer to
control PCI-8132 in high level language style.

� Chapter 7, “Connection Example” shows some typical connection
examples between PCI-8132 and servo driver and stepping driver.

Introduction • 1

1

Introduction

The PCI-8132 is a 2 axes motion control card with PCI interface. It can
generate high frequency pulses to drive stepping motors and servo motors.
Multiple PCI-8132 cards can be used in one system. Incremental encoder
interface on all four axes provide the ability to correct for positioning errors
generated by inaccurate mechanical transmissions. In addition,
mechanical sensor interface, servo motor interface and general purpose
I/O signals are provided for system integration. Hardware position
compare function and trigger signal output provide users a way of taking
pictures while the motors are still in motion.
Figure 1.1 shows the function block diagram of PCI-8132 card. PCI-8132
uses one ASIC (PCL5023) to perform 2 axes motion control. This ASIC is
made of Nippon Pulse Motor incooperation. The motion control functions
include linear and S-curve acceleration/deceleration, interpolation
between two axes, continuous motion, in positioning and home return are
done by the ASIC. Since these functions needing complex computations
are done internally on the ASIC, the PC’s CPU is free to supervise and
perform other tasks.
Motion Creator, a Microsoft Windows based software is equipped with the
PCI-8132 card for supporting application development. The Motion
Creator is very helpful for debugging a motion control system during the
design phase of a project. The on-screen monitor shows all installed axis
information and I/O signals status of PCI-8132 cards. In addition to Motion
Creator, both DOS and Windows version function library are included for
programmers using C++ and Visual Basic language. Several sample
programs are given to illustrate how to use the function library.
Figure 1.2 is a flowchart that shows a recommending process of using this
manual to develop an application. Please also refer the relative chapters
for the detail of each step.

2 • Introduction

Figure 1.1 Block Diagram of PCI-8132

CN2

DC/DC

Ext+24V Input

PCI Bus
Controller

PCL 5023
for axes

X & Y

FPGA for
Position

Comparison

Simultaneousl
y

CN3

Isolation

Pulse I/O
Mechanic

al
Interface

Servo
Driver

Interface

General
Purpose

I/O

Pulser

Compariso

n
Output

OUT,
DIR,

EA, EB,
EZ

+EL, -EL,
+SD,-SD,

ORG

INP, ALM
ERC

SVON/RDY
DI/DO 0~15

PA/PB

CMP1
CMP2

PCI Bus

Ext +5V out

CN1

Introduction • 3

Figure 1.2 Flowchart of building an application

Hardware Installation
Jumper Setting

Wiring

Run Motion Creator
To Configure System

System is
OK?

END

Chapter 2 & 3

Chapter 5

Run Motion Creator
To Verify Operation

Chapter 4 & 5

Use Function Library
To develop Applications

Chapter 4 & 6

No

Yes

4 • Introduction

1.1 Features
The following lists summarize the main features of the PCI-8132 motion
control system.

� 32-bit PCI-Bus, plug and play.
� 2 axes of step and direction pulse output for controlling stepping or

servomotor.
� Maximum output frequency of 2.4 Mpps.
� 2-axis circular and linear interpolation.
� 28-bit up/down counter for incremental encoder feedback.
� Home switch, index signal, positive and negative limit switches

interface provided for all axes.
� Programmable interrupt sources.
� Change Speed on the Fly.
� Positiion Compare and Trigger Signal output.
� Simultaneous start/stop motion on multiple axes.
� Manual pulser input interface.
� Software supports maximum up to 12 PCI-8132 cards (24 axes)

operation.
� Compact, half size PCB.
� Motion Creator, Microsoft Windows based application

development software.
� PCI-8132 Library and Utility for DOS library and Windows

95/98/NT DLL.

Introduction • 5

1.2 Specifications
♦ Applicable Motors:

� Stepping motors.
� AC or DC servomotors with pulse train input servodrivers.

♦ Performance:
� Number of controllable axes: 2 axes.
� Maximum pulse output frequency: 2.4Mpps, linear, trapezoidal or

S-Curve velocity profile drive.
� Internal reference clock: 9.8304 MHz
� Position pulse setting range: 0~268,435,455 pulses(28-bit).
� Up / down counter counting range: 0~268,435,455 (28-bit.)

or –134,217,728 to +134,217,727
� Pulse rate setting steps: 0 to 2.4Mpps.
� Position Comparison Range:-8,388,608 ~ +8388607(24 bits)

♦ I/O Signales:
� Input/Output Signals for each axis
� All I/O signal are optically isolated with 2500Vrms isolation voltage
� Command pulse output pins: OUT and DIR.
� Incremental encoder signals input pins: EA and EB.
� Encoder index signal input pin: EZ.
� Mechanical limit/switch signal input pins: ±EL, ±SD and ORG.
� Servomotor interface I/O pins: INP, ALM and ERC.
� General purpose digital output pin: SVON.
� General purpose digital input pin: RDY.
� Pulser signal input pin: PA and PB.
� Simultaneous Start/Stop signal I/O pins: STA and STP.
� 16 Channels Open collector digital output
� 16 Channels Isolated digital input
� Trigger Output Signals:CMP1/CMP2
�

♦ General Specifications
� Connectors: 100-pin SCSI-type connector
� Operating Temperature: 0° C ~ 50° C
� Storage Temperature: -20° C ~ 80° C
� Humidity: 5 ~ 85%, non-condensing
� Power Consumption:
² Slot power supply(input): +5V DC ±5%, 900mA max.

6 • Introduction

² External power supply(input): +24V DC ±5%, 500mA max.
² External power supply(output): +5V DC ±5%, 500mA, max.

� Dimension: 164mm(L) X 98.4mm(H)

1.3 Software Supporting
For the customers who are writing their own programs, we provide
MS-DOS Borland C/C++ programming library and Windows -95/98/NT DLL
for PCI-8132. These function libraries are shipped with the board.

Installation • 7

2

Installation

This chapter describes how to install the PCI-8132. Please follow the
follow steps to install the PCI-8132.

� Check what you have (section 2.1)
� Check the PCB (section 2.2)
� Install the hardware (section 2.3)
� Install the software driver (section 2.4)
� Understanding the I/O signal connections (chapter 3) and their

operation (chapter 4)
� Understanding the connectors’ pin assignments (the rest of the

sections) and wiring the connections

2.1 What You Have
In addition to this User's Guide, the package includes the following items:

� PCI-8132 2 axes Servo / Stepper Motion Control Card
� ADLINK CD
� User’s Manual
� +24V power input cable (for CN1)

If any of these items are missing or damaged, contact the dealer from
whom you purchased the product. Save the shipping materials and carton
in case you want to ship or store the product in the future.

8 • Installation

2.2 PCI-8132 Outline Drawing

Figure 2.1 PCB Layout of the PCI-8132

CN1: External Power Input Connector
CN2: Input / Output Signal Connector
CN3: Simultaneous Start/Stop

Front Panel

Installation • 9

2.3 Hardware Installation
2.3.1 Hardware configuration

PCI-8132 has plug and play PCI controller on board. The memory usage
(I/O port locations) of the PCI card is assigned by system BIOS. The
address assignment is done on a board-by-board basis for all PCI cards in
the system.

2.3.2 PCI slot se lection
Your computer will probably have both PCI and ISA slots. Do not force the
PCI card into a PC/AT slot. The PCI-8132 can be used in any PCI slot.

2.3.3 Installation Procedures
1. Read through this manual, and setup the jumper according to your

application
2. Turn off your computer, Turn off all accessories (printer, modem,

monitor, etc.) connected to computer.
Remove the cover from your computer.

3. Select a 32-bit PCI expansion slot. PCI slots are short than ISA or
EISA slots and are usually white or ivory.

4. Before handling the PCI-8132, discharge any static buildup on
your body by touching the metal case of the computer. Hold the
edge and do not touch the components.

5. Position the board into the PCI slot you selected.
6. Secure the card in place at the rear panel of the system unit using

screw removed from the slot.

2.3.4 Trouble shooting:
If your system won‘t boot or if you experience erratic operation with your
PCI board in place, it’s likely caused by an interrupt conflict (perhaps
because you incorrectly described the ISA setup). In general, the solution,
once you determine it is not a simple oversight, is to consult the BIOS
documentation that come with your system.

10 • Installation

2.4 Software Driver Installation
Please refer to the PCI Software Installation Guide.

2.5 CN1 Pin Assignments: External Power Input

CN1 Pin No Name Description

1 EXGND Grounds of the external power.
2 EX+24V External power supply of +24V DC ± 5%

Notes:

1. CN1 is a plug-in terminal board with no screw.
2. Be sure to use the external power supply. The +24V DC is used

by external input/output signal circuit. The power circuit is
configured as follows.

3.Wires for connection to CN1
 Solid wire: ϕ 0.32mm to ϕ 0.65mm (AWG28 to AWG22)
 Twisted wire:0.08mm2 to 0.32mm2 (AWG28 to AWG22)
 Naked wire length:10mm standard

The following diagram shows the external power supply system of the
PCI-8132. The external +24V power must be provided, an on-board
regulator generates +5V for both internal and external usage.

Isolation

DC/DC

+5V
GND

I/O
SIGNALS

EX+5V

EXGND

EX+24V

Ex
te
rn
al

Po
we
r
Su
pp
ly

(OUTPUT)

In
te
rn
al

Po
we
r
Su
pp
ly

fr
om
 P
CI
 B
US

(Bus Power) (External Power)

I/O SIGNALS

Installation • 11

2.6 CN2 Pin Assignments: Main connector
The CN2 is the major connector for the motion control I/O signals.

No. Name I/O Function(axis�/�) No. Name I/O Function(axis�/�)
1 VPP +5V O +5V power supply output 51 DO COM+ I Ext power input for Dout
2 EXGND O Ext. power ground 52 EXGND O Ext. power ground
3 OUT1+ O Pulse signal (+),� 53 DO0 O Isolated digital output 0
4 OUT1- O Pulse signal (-),� 54 DO1 O Isolated digital output 1
5 DIR1+ O Dir. signal (+),� 55 DO2 O Isolated digital output 2
6 DIR1- O Dir. signal (-),� 56 DO3 O Isolated digital output 3
7 SVON1 O Multi-purpose signal, � 57 DO4 O Isolated digital output 4
8 ERC1 O Dev. ctr, clr. signal, � 58 DO5 O Isolated digital output 5
9 ALM1 I Alarm signal, � 59 DO6 O Isolated digital output 6
10 INP1 I In-position signal, � 60 DO7 O Isolated digital output 7
11 RDY1 I Multi-purpose signal, � 61 DO8 O Isolated digital output 8
12 EXGND O Ext. power ground 62 DO9 O Isolated digital output 9
13 EA1+ I Encoder A-phase (+), � 63 DO10 O Isolated digital output 10
14 EA1- I Encoder A-phase (-), � 64 DO11 O Isolated digital output 11
15 EB1+ I Encoder B-phase (+), � 65 DO12 O Isolated digital output 12
16 EB1- I Encoder B-phase (-), � 66 DO13 O Isolated digital output 13
17 EZ1+ I Encoder Z-phase (+), � 67 DO14 O Isolated digital output 14
18 EZ1- I Encoder Z-phase (-), � 68 DO15 O Isolated digital output 15
19 VPP +5V O +5V power supply output 69 EXGND O Ext. power ground
20 EXGND O Ext. power ground 70 EXGND O Ext. power ground
21 OUT2+ O Pulse signal (+), � 71 DI COM+ I Ext power input for Din
22 OUT2- O Pulse signal (-), � 72 DI COM+ I Ext power input for Din
23 DIR2+ O Dir. signal (+), � 73 DI0 I Isolated digital input 0
24 DIR2- O Dir. signal (-), � 74 DI1 I Isolated digital input 1
25 SVON2 O Multi-purpose signal, � 75 DI2 I Isolated digital input 2
26 ERC2 O Dev. ctr, clr. signal, � 76 DI3 I Isolated digital input 3
27 ALM2 I Alarm signal, � 77 DI4 I Isolated digital input 4
28 INP2 I In-position signal, � 78 DI5 I Isolated digital input 5
29 RDY2 I Multi-purpose signal, � 79 DI6 I Isolated digital input 6
30 EXGND O Ext. power ground 80 DI7 I Isolated digital input 7
31 EA2+ I Encoder A-phase (+), � 81 DI8 I Isolated digital input 8
32 EA2- I Encoder A-phase (-), � 82 DI9 I Isolated digital input 9
33 EB2+ I Encoder B-phase (+), � 83 DI10 I Isolated digital input 10
34 EB2- I Encoder B-phase (-), � 84 DI11 I Isolated digital input 11
35 EZ2+ I Encoder Z-phase (+), � 85 DI12 I Isolated digital input 12
36 EZ2- I Encoder Z-phase (-), � 86 DI13 I Isolated digital input 13
37 PEL1 I End limit signal (+), � 87 DI14 I Isolated digital input 14
38 MEL1 I End limit signal (-), � 88 DI15 I Isolated digital input 15
39 PSD1 I Ramp-down signal (+), � 89 EXGND I Ext. power ground
40 MSD1 I Ramp-down signal (-), � 90 EXGND I Ext. power ground
41 ORG1 I Origin signal, � 91 PA+ I Manual Pulser Input PHA+
42 EXGND O Ext. power ground 92 PA- I Manual Pulser Input PHA-
43 PEL2 I End limit signal (+), � 93 PB+ I Manual Pulser Input PHB+
44 MEL2 I End limit signal (-), � 94 PB- I Manual Pulser Input PHB-
45 PSD2 I Ramp-down signal (+), � 95 EXGND I Ext. power ground
46 MSD2 I Ramp-down signal (-), � 96 CMP1 O Position compare Trigger 1
47 ORG2 I Origin signal, � 97 CMP2 O Position compare Trigger 2
48 EXGND O Ext. power ground 98 EXGND O Ext. power ground
49 EXGND O Ext. power ground 99 VPP +24V O +24V power supply output
50 EXGND O Ext. power ground 100 VPP +24V O +24V power supply output

12 • Installation

2.7 CN3 Pin Assignments: Simultaneous
Start/Stop

The signals on CN3 is for simultaneously start/stop signals for multiple
axes and multiple cards.

No. Name Function(Axis)
1 GND Bus power ground
2 STP Simultaneous stop signal input/output
3 STA Simultaneous start signal input/output
4 STP Simultaneous stop signal input/output
5 STA Simultaneous start signal input/output
6 +5V Bus power, +5V

Note: +5V and GND pins are directly given by the PCI Bus power.

Installation • 13

2.8 Jumper Setting
The J1~J4 is used to set the signal type of the pulse output signals (DIR
and OUT). The output signal type could be differential line driver output
or open collector output. Please refer to section 3.1 for details of the
jumper setting. The default setting is the differential line driver mode.

2.9 Switch Setting
The switch bits 1/2 of S1 are used to set the EL limit switch’s type. The
default setting of EL switch type is “normal open” type limit switch (or “A”
contact type). The switch on is to use the “normal closed” type limit
switch (or “B” contact type). The default setting is set as normal open type.
The bits 3/4 of S1 are used to set the active logic of CMP1,CMP2
respectively.
Default setting is active low. This means that when a positive comparison
condition is met ,CMP will go high for 100 us automatically.

Bit

Placement of S1 Switch on Board

1 2 3 4

ON

OFF

S1
Bits1/2: Select ‘a’ Contact EL Switch (Normal
Open) Bits1/2: Select ‘b’ Contact EL Switch (Normal
Close)

Bits3/4: Set CMP1/2 active High at ON position

Bits3/4: Set CMP1/2 active Low at OFF position

Open Collector

Line Driver

3
2
1

J1J1 J1J2 J1J3 J1J4

14 • Signal Connections

3

Signal Connections

The signal connections of all the I/O signals are described in this chapter.
Please refer the contents of this chapter before wiring the cable between
the PCI-8132 and the motor drivers.

This chapter contains the following sections:

Section 3.1 Pulse output signals OUT and DIR
Section 3.2 Encoder feedback signals EA, EB and EZ
Section 3.3 Origin signal ORG
Section 3.4 End-Limit signals PEL and MEL
Section 3.5 Ramping-down signals PSD and MSD
Section 3.6 In-position signal INP
Section 3.7 Alarm signal ALM
Section 3.8 Deviation counter clear signal ERC
Section 3.9 General-purpose signal SVON
Section 3.10 General-purpose signal RDY
Section 3.11 General Purpose Digital Output
Section 3.12 General Purpose Digital Input
Section 3.13 Pulser input signals PA and PB
Section 3.14 Simultaneous start/stop signals STA and STP
Section 3.15 Comparison Output CMP1,CMP2
Section 3.16 Daughter Board Connector

Signal Connections • 15

3.1 Pulse Output Signals OUT and DIR
There are 2-axis pulse output signals on PCI-8132. For every axis, two
pairs of OUT and DIR signals are used to send the pulse train and to
indicate the direction. The OUT and DIR signals can also be
programmed as CW and CCW signals pair, refer to section 4.1.1 for
details of the logical characteristics of the OUT and DIR signals. In this
section, the electronic characteristics of the OUT and DIR signals are
shown. Each signal consists of a pair of differential signals. For
example, the OUT2 is consisted of OUT2+ and OUT2- signals. The
following table shows all the pulse output signals on CN2.

CN2 Pin No. Signal Name Description Axis #

3 OUT1+ Pulse signals (+) �
4 OUT1- Pulse signals (-) �
5 DIR1+ Direction signal(+) �
6 DIR1- Direction signal(-) �
21 OUT2+ Pulse signals (+) �
22 OUT2- Pulse signals (-) �
23 DIR2+ Direction signal(+) �
24 DIR2- Direction signal(-) �

The output of the OUT or DIR signals can be configured by jumpers as
either the differential line driver or open collector output. You can select
the output mode either by closing breaks between 1 and 2 or 2 and 3 of
jumpers J1~J4 as follows.

Output
Signal

For differential line driver
output, close a break

between 1 and 2 of

For open collector
output, close a break
between 2 and 3 of:

OUT1- J1 J1
DIR1- J2 J2
OUT2- J3 J3
DIR2- J4 J4

The default setting of OUT and DIR signals are the as differential line
driver mode.

16 • Signal Connections

The following wiring diagram is for the OUT and DIR signals of the 2 axes.

NOTE: If the pulse output is set to the open collector output mode, the
OUT- and DIR- are used to send out signals. Please take care that the
current sink to OUT- and DIR- pins must not exceed 20mA. The current
may provide by the EX+5V power source, however, please note that the
maximum capacity of EX+5V power is 500mA.

VCC EX+5V

J1~J8

OUT
DIR

from PCL5023

OUT+, DIR+

OUT-, DIR-

EXGND

R

3

1
2

2631

CN2 Inside PCI-8132

Signal Connections • 17

3.2 Encoder Feedback Signals EA, EB and EZ
The encoder feedback signals include the EA, EB, and EZ. Every axis
has six pins for three differential pairs of phase-A (EA), phase-B (EB) and
index (EZ) input. The EA and EB are used for position counting, the EZ
is used for zero position index. The relative signal names, pin numbers
and the axis number are shown in the following tables.

CN2 Pin No Signal Name Axis # CN2 Pin No Signal Name Axis #

13 EA1+ � 31 EA2+ �
14 EA1- � 32 EA2- �
15 EB1+ � 33 EB2+ �
16 EB1- � 34 EB2- �

CN2 Pin No Signal Name Axis # CN2 Pin No Signal Name Axis #

17 EZ1+ � 35 EZ2+ �
18 EZ1- � 36 EZ2- �

The input circuits of the EA, EB, EZ signals are shown as follows.

Please note that the voltage across every differential pair of encoder input
signals (EA+, EA-), (EB+, EB-) and (EZ+, EZ-) should be at least 3.5V or
higher. Therefore, you have to take care of the driving capability when
connecting with the encoder feedback or motor driver feedback. The
differential signal pairs will be converted to digital signal EA, EB and EZ to
connect to PCL5023 ASIC.
Here are two examples of connecting the input signals with the external
circuits. The input circuits can connect to the encoder or motor driver,
which are equipped with: (1) differential line driver or (2) open collector
output.

PCL5023
EA, EB
EZ

EA+, EB+,
EZ+

EA-, EB-
EZ-

R

CN2 Inside PCI-8132

18 • Signal Connections

♦ Connection to Line Driver Output
To drive the PCI-8132 encoder input, the driver output must provide at
least 3.5V across the differential pairs with at least 6 mA driving capability.
The ground level of the two sides must be tight together too.

♦ Connection to Open Collector Output
To connect with open collector output, an external power supply is
necessary. Some motor drivers also provide the power source. The
connection between PCI-8132, encoder, and the power supply is shown in
the following diagram. Please note that the external current limit resistor
R is necessary to protect the PCI-8132 input circuit. The following table
lists the suggested resistor value according to the encoder power supply.

Encoder Power(VDD) External Resistor R

+5V 0 Ω (None)
+12V 1.8kΩ
+24V 4.3kΩ

If=6mA max.

For more detail operation of the encoder feedback signals, please refer to
setcion 4.4.

External Encoder / Driver
With line driver output PCI-8132

A,B phase signals
Index signal

EA+,EB+,EZ+
EZ+
EA-, EB-, EZ-

EXGND GND

VDD
GND

Motor Encoder / Driver
With Open Collector Output

External Power for
Encoder

PCI-8132

A, B phase signals
Index signal

EA+, EB+,
EZ+

EA-, EB-,
EZ-

R

Signal Connections • 19

3.3 Origin Signal ORG
The origin signals (ORG1~ORG2) are used as input signals for origin of
the mechanism. The following table lists the relative signal name, pin
number, and the axis number.

CN2 Pin No Signal Name Axis #
41 ORG1 �
47 ORG2 �

The input circuits of the ORG signals are shown as following. Usually, a
limit switch is used to indicate the origin of one axis. The specifications of
the limit switches should with contact capacity of +24V, 6mA minimum.
An internal filter circuit is used to filter out the high frequency spike, which
may cause wrong operation.

When the motion controller is operated at the home return mode, the ORG
signal is used to stop the control output signals (OUT and DIR). For the
detail operation of the ORG, please refer to section 4.3.3.

EX+24V

If=6mA Max.

Filter
Circuit

To PCL5023
ORG

4.7K

EXGND

Inside PCI-8132 CN2

ß Switch

20 • Signal Connections

3.4 End-Limit Signals PEL and MEL
There are two end-limit signals PEL and MEL for one axis. PEL indicates
end limit signal in plus direction and MEL indicates end limit signal in
minus direction. The relative signal name, pin number and axis number
are shown in the following table.

CN2 Pin No Signal Name Axis # CN2 Pin No Signal Name Axis #

37 PEL1 � 43 PEL2 �
38 MEL1 � 44 MEL2 �

The signals connection and relative circuit diagram is shown in the
following diagram. The external limit switches featuring a contact
capacity of +24V, 6mA minimum. You can use either ‘A-type’ (normal
open) contact switch or ‘B-type’ (normal closed) contact switch by setting
the DIP switch S1. The PCI-8132 is delivered with all bits of S1 set to OFF,
refer to section 2.10. For the details of the EL operation, please refer to
section 4.3.2.

EX+24V

If=6mA Max.

Filter
Circuit

To PCL5023
PEL
MEL

4.7K

EXGND

Inside PCI-8132 CN2

ß Switch

Signal Connections • 21

3.5 Ramping-down Signals PSD and MSD
There are two ramping-down (Slow-Down) signals PSD and MSD for one
axis. The relative signal name, pin number and axis number are shown
in the following table.

CN2 Pin No Signal Name Axis #
39 PSD1 �
40 MSD1 �
45 PSD2 �
46 MSD2 �

The signals connection and relative circuit diagram is shown in the
following diagram. Usually, limit switches are used to generate the
slow-down signals to make motor operating in a slower speed. For more
details of the SD operation, please refer to section 4.3.1.

EX+24V

If=6mA Max.

Filter
Circuit

To PCL5023
PSD
MSD

4.7K

EXGND

Inside PCI-8132 CN2

ß Switch

22 • Signal Connections

3.6 In-position Signal INP
The in-position signals INP from the servo motor driver indicate the
deviation error is zero, that is the servo position error is zero. The
relative signal name, pin number and axis number are shown in the
following table.

CN2 Pin No Signal Name Axis #
10 INP1 �
28 INP2 �

The input circuit of the INP signals are shown in the following diagram.

The in-position signals are usually from servomotor drivers, which usually
provide open collector output signals. The external circuit must provide at
least 5 mA current sink capability to drive the INP signal active. For more
details of the INP signal operating, please refer to section 4.2.1.

EX+5V

If=12mA Max.
If=5mA Min.

To PCL5023

INP

R

Inside PCI-8132 CN2

Signal Connections • 23

3.7 Alarm Signal ALM
The alarm signal ALM is used to indicate the alarm status from the servo
driver. The relative signal name, pin number and axis number are shown
in the following table.

CN2 Pin No Signal Name Axis #
9 ALM1 �
27 ALM2 �

The input circuit of alarm circuit is shown in the following diagram. The
ALM signals are usually from servomotor drivers, which usually provide
open collector output signals. The external circuit must provide at least
5 mA current sink capability to drive the ALM signal active. For more
details of the ALM operation, please refer to section 4.2.2.

EX+5V

If=12mA Max.
If=5mA Min.

To PCL5023

ALM

R

Inside PCI-8132 CN2

24 • Signal Connections

3.8 Deviation Counter Clear Signal ERC
The deviation counter clear signal (ERC) is active in the following 4
situations:

(1) home return is complete;
(2) the end-limit switch is active;
(3) an alarm signal stops OUT and DIR signals;
(4) an emergency stop command is issued by software (operator).

The relative signal name, pin number and axis number are shown in the
following table.

CN2 Pin No Signal Name Axis #

8 ERC1 �
26 ERC2 �

The ERC signal is used to clear the deviation counter of servomotor driver.
The ERC output circuit is in the open collector with maximum 35 V
external power at 50mA driving capability. For more details of the ERC
operation, please refer to section 4.2.3.

35V 50mA Maximum
ERC

From PCL5023

EXGND

Inside PCI-8132 CN2

Signal Connections • 25

3.9 General-purpose Signal SVON
The SVON signals can be used as servomotor-on control or
general-purpose output signals. The relative signal name, pin number
and axis number are shown in the following table.

CN2 Pin No Signal Name Axis #
7 SVON1 �
25 SVON2 �

The output circuit of SVON signal is shown in the following diagram.

35V 50mA Maximum
SVON

From PCL5023

EXGND

Inside PCI-8132 CN2

26 • Signal Connections

3.10 General-purpose Signal RDY
The RDY signals can be used as motor driver ready input or
general-purpose input signals. The relative signal name, pin number
and axis number are shown in the following table.

CN2 Pin No Signal Name Axis #
11 RDY1 �
29 RDY2 �
61 RDY3 �
71 RDY4 �

The input circuit of RDY signal is shown in the following diagram

RDY

EX+5V

If=12mA Max.
If=5mA Min.

To PCL5023

R

Inside PCI-8132 CN2

Signal Connections • 27

TD 62083

3.11 Isolated Digital Output DOx
The connection of isolated-digital output is shown as following diagram.
When the isolated digital output goes to high, the sink current will be from
external Dout supplied voltage. Each transistor on TD62083 is at OFF
State when reset.

DO COM+

DOut

Inside PCI-8132

DOx

DGND

PhotoCouple
Isolation

EXGND

Spec. of TD62083

� Output sustaning voltage: 50V
� Output Current: 123 mA/ch (Duty=50%), 500 mA/ch(MAX.)
� Clamp Diode Reverse Voltage: 50V
� Clamp Diode Forward Current: 500mA
� Power Dissipation: 1.47W (maximum)

28 • Signal Connections

3.12 Isolated Digital Input DIx
The isolated digital input is open collector transistor structure. The Input
voltage range from 5V to 24V and input resister is 4.7K (1/2W). The
connection between outside signal is shown bellow. Maximum forward
current through the diode of photocoupler is +/- 50mA

DI COM+

DI
SwitchInside PCI-8132

4.7K ohm 1/2W

DI

DGND
EXGND

Photocoupler
Isolation

Signal Connections • 29

3.13 Pulser Input Signals PA and PB
The PCI-8132 can accept the input signals from pulser signals through the
following pins of connector CN2. The pulser’s behavior is as an encoder.
The signals are usually used as generate the position information which
guide the motor to follow.

CN2
Pin No

Signal
Name

91 PA+
92 PA-
93 PB+
94 PB-

PA and PB pins of connector CN2 are directly connected to PA and PB
pins of PCL5023. The interfac circuits are shown as follows.

If the signal voltage of pulser is not +5V or if the pulser is distantly placed,
it is recommended to put a photo coupler or line driver in between.

PCL5023
PA, PB

PA+, PB+

PA-, PB-

R

CN2 Inside PCI-8132

30 • Signal Connections

3.14 Simultaneously Start/Stop Signals STA and
STP

The PCI-8132 provides the STA and STP signals, which enable
simultaneous start/stop of motions on multiple axes. The STA and STP
signals are on the CN3.

On one card, two PCL5023 chips provide two sets of STA and STP signals.
The following diagram shows the on-board circuits. The STA and STP
signals of the two axes are tight together respectively.

The STP and STA signals are both input and output signal. To operate
the simultaneously start and stop action, both software control and
external control are possible. By the software control, the signals can be
generated from any one of the PCL5023, and other chip will start and stop
simultaneously if proper programmed. You can also use an external open
collector or switch to drive the STA/STP signals for simultaneous
start/stop.
If there are two or more PCI-8132 cards, cascade CN3 connectors of all
cards for simultaneous start/stop control on all concerned axes is possible.
In this case, connect CN3 as follows.

VCC VCC

PCL5023

STP STP, AXIS 1&2

STA, AXIS 1&2

2

3

4.7K

4.7K

CN3 Inside PCI-8132

STP

CN3

PCI-8132 #1 PCI-8132 #2 PCI-8132 #3

CN3 CN3

STA
STP
STA

STP
STA
STP
STA

STP
STA
STP
STA

STA

Signal Connections • 31

To let an external signal to initiate simultaneous start/stop, connect the 7406
(open collector) or the equivalent circuit as follows.

3.15 Daughter Board Connector
The CN2 connector of PCI-8132 can be connected with DIN-100S,
including a cable ACL-102100 (a 100-pin SCSI-II cable). DIN-100S is a
general purpose DIN-socket with 100-pin SCSI-II connector. It has easily
wiring screw terimal and easily installation DIN socket that can be
mounted on DIN-rails
Please check the NuDAQ catalog by ADLINK for further information of
DIN-100S.

STOP 7406

STP

CN4

PCI-8132 #1 PCI-8132 #2 PCI-8132 #3

CN4 CN4

STA
STP
STA

STP
STA
STP
STA

STP
STA
STP
STA

7406 START

32 • Signal Connections

3.16 Comparison Output CMP1 and CMP2
The PCI-8132 provides two pins for position compare trigger output. The
pulse width of this trigger is 100 micro seconds for most industrial CCD
camera. The pin assignment and wiring are as follows:

CN2 Pin No Signal Name Axis #
96 CMP1 �
97 CMP2 �

Pulse

VCC
EX+5V

1k
Ohm

CMP

EX
GND

Inside 8132

Operation Theorem • 33

4

Operation Theorem

This chapter describes the detail operation of the PCI-8132 card. Contents
of the following sections are as following.

Section 4.1: The motion control modes
Section 4.2: The motor driver interface (INP, ERC, ALM, SVON, RDY)
Section 4.3: The limit switch interface and I/O status (SD, EL, ORG)
Section 4.4: The encoder feedback signals (EA, EB, EZ)
Section 4.5: Multiple PCI-8132 cards operation.
Section 4.6: Change Speed on the Fly
Section 4.7: Position Comparison
Section 4.8: Interrupt Control

4.1 Motion Control Modes
In this section, the pulse output signals’ configurations, and the following
motion control modes are described.

� Constant velocity motion for one axis
� Trapezoidal motion for one axis
� S-Curve profile motion for one axis
� Linear / Circular interpolation for two axes
� Home return mode for one axis
� Manual pulser mode for one axis

34 • Operation Theorem

4.1.1 Pulse Command Output
The PCI-8132 uses pulse command to control the servo / stepper motors
via the drivers. The pulse command consists of two signals: OUT and
DIR. There are two command types: (1) single pulse output mode
(OUT/DIR); and (2) dual pulse output mode (CW/CCW type pulse output).
The software function: set_pls_outm ode() is used to program the pulse
command type. The modes vs. signal type of OUT and DIR pins are as
following table:

Mode Output of OUT pin Output of DIR pin

Dual pulse output Pulse signal in plus (or
CW) direction

Pulse signal in minus (or
CCW) direction

Single pulse output Pulse signal Direction signal (level)

The interface characteristics of these signals could be differential line
driver or open collector output. Please refer to section 3.1 for the jumper
setting of signal types.

♦ Single Pulse Output Mode(OUT/DIR Mode)
In this mode, the OUT signal is represent the pulse (position or velocity)
command. The numbers of OUT pulse represent the motion command
for relative “distance” or “position”, the frequency of the OUT pulse
represents the command for “speed” or “velocity”. The DIR signal
represents direction command of the positive (+) or negative (-). This
mode is the most common used mode. The following diagram shows the
output waveform.

♦ Dual Pulse Output Mode(CW/CCW Mode)
In this mode, the waveform of the OUT and DIR pins represents CW
(clockwise) and CCW (counter clockwise) pulse output respectively.
Pulses output from CW pin makes motor move in positive direction,
whereas pulse output from CCW pin makes motor move in negative
direction. The following diagram shows the output waveform of positive
(plus,+) command and negative (minus,-) command.

OUT

DIR

Positive Command

Negative Command

Operation Theorem • 35

♦ Relative Function:
 _8132_set_pls_optmode(): Refer to section 6.4

4.1.2 Constant Velocity Motion
This mode is used to operate one axis motor at constant velocity motion.
The output pulse accelerates from a starting velocity (str_vel) to the
specified constant velocity (max_vel). The _8132_v_move() function is
used to accelerate constantly while the _8132_sv_move() function is to
accelerate according to S-curve (constant jerk). The pulse output rate will
keep at maximum velocity until another velocity command is set or stop
command is issued. The _8132_v_change() is used to change speed
during moving. The _8132_v_stop() function is used to decelerate the
motion to zero velocity (stop). The velocity profile is shown as following.
Note that v_stop() function can be also be applied to stop outputting
command pulses during Preset Mode (both trapezoidal and S-curve
Motion) , Home Mode or Manual Pulser Mode operations .

♦ Relative Functions:
_8132_v_move(), _8132_v_stop(), _8132_sv_move(): Refer to

section 5.5

OUT
 DIR
 Negative Command

OUT
DIR
 Positive Command

36 • Operation Theorem

4.1.3 Trapezoidal Motion
This mode is used to move one axis motor to a specified position (or
distance) with a trapezoidal velocity profile. Single axis is controlled from
point to point. An absolute or relative motion can be performed. In
absolute mode, the target position is assigned. In relative mode, the
target displacement is assigned. In both absolute and relative mode, the
acceleration and the deceleration can be different. The
_8132_motion_done() function is used to check whether the movement
is complete.
The following diagram shows the trapezoidal profile. There are 9 relative
functions. In the _8132_a_move(),_8132_ta_move() and _8132_start_a
_move(),_8132_start_ta_move() functions, the absolute target position
must be given in the unit of pulse. The physical length or angle of one
movement is dependent on the motor driver and the mechanism (includes
the motor). Since absolute move mode needs the information of current
actual position, so “External encoder feedback (EA, EB pins)” must be
enabled in _8132_set_cnt_src() function. And the ratio between
command pulses and external feedback pulse input must be appropriately
set by _8132_set_move_ratio() function.
 In the _8132_r_move(),_8132_t_move() and _8132_start_r_move(),
_8132_start_t_move() functions, the relative displacement must be
given in the unit of pulse. Unsymmetrical trapezoidal velocity profile (Tacc
is not equal Tdec) can be specified in _8132_ta_move() and
_8132_t_move() functions; where symmetrical profile (Tacc = Tdec) can
be specified in _8132_a_move() and _8132_r_move() functions

V
elocity(pps)

str_vel

Tacc
 Tdec

max_vel

v_move()

v_stop()

Time(second)

Operation Theorem • 37

 The str_vel and max_vel parameters are given in the unit of pulse per
second (pps). The Tacc and Tdec parameters are given in the unit of
second represent accel./decel. time respectively. You have to know the
physical meaning of “one movement” to calculate the physical value of the
relative velocity or acceleration parameters. The following formula gives
the basic relationship between these parameters.

 max_vel = str_vel + accel*Tacc;
 str_vel = max_vel + decel *Tdec;

where accel/decel represents the acceleration/deceleration rate in unit of
pps/sec. The area inside the trapezoidal profile represents the moving
distance.
The unit of velocity setting is pulses per second (pps). Usually, the unit of
velocity in the manual of motor or driver is in rounds per minute (rpm). A
simple conversion is necessary to match between these two units. Here
we use a example to illustrate the conversion.

38 • Operation Theorem

For example:
A servo motor with a AB phase encoder is used for a X-Y table. The
resolution of encoder is 2000 counts per phase. The maximum
rotating speed of motor is designed to be 3600 rpm. What is the
maximum pulse command output frequency that you have to set on
PCI-8132?

Answer:
max_vel = 3600/60*2000*4
 = 48000pps

The reason why *4 is because there are four states per AB phase (See
Figures in Section 4.4).

Usually, the axes need to set the move ratio if their mechanical resolution
is different from the resolution of command pulse. For example, if an
incremental type encoder is mounted on the working table to measure the
actual position of moving part. A servomotor is used to drive the moving
part through a gear mechanism. The gear mechanism is used to convert
the rotating motion of motor into linear motion.(see the following diagram).
If the resolution of motor is 8000 pulses/round. The resolution of gear
mechanism is 100 mm/round.(i.e., part moves 100 mm if motor turns
one round). Then the resolution of command pulse will be 80 pulses/mm.
The resolution of encoder mounting on the table is 200 pulses/mm. Then
users have to set the move ratio as 200/80=2.5 by the function:

V
elocity (pps)

str_vel

Tacc
 Tdec

max_vel

str_vel

Time (second)

Operation Theorem • 39

♦ _8132_set_move_ratio(axis, 2.5);

If this ratio is not set before issuing the start moving command, it will
cause problems when running in “Absolute Mode”. Because the PCI-8132
can’t recognize the actual absolute position during motion.

♦ Relative Functions:
_8132_a_move(),_8132_r_move(),_8132_t_move(),_8132_ta_move(),
_8132_start_a_move(),
_8132_start_r_move(),_8132_start_t_move(),_8132_start_ta_move()
Refer to section 6.6.
_8132_motion_done(): Refer to section 6.13.
_8132_set_cnt_src(): Refer to section 6.4.
_8132_set_move_ratio(): Refer to section 6.10.

Moving part

Motor Gear

Encoder

Table

40 • Operation Theorem

4.1.4 S-curve Profile Motion
This mode is used to move one axis motor to a specified position (or
distance) with a S-curve velocity profile. S-curve acceleration profiles are
useful for both stepper and servo motors. The smooth transitions between
the start of the acceleration ramp and the transition to the constant
velocity produce less wear and tear than a trapezoidal profile motion. The
smoother performance increases the life of the motors and mechanics of a
system.
There are several parameters needed to be set in order to make a S-curve
move. They are:

pos: target position in absolute mode;
dist : moving distance in relative mode;
str_vel : specify the start velocity;
max_vel : specify the maximum velocity;
Tlacc : specify the time for linear acceleration section
 (constant acceleration).
Tsacc : specify the time for S-curve acceleration section
 (constant jerk).
Tldec : specify the time for linear deceleration section
 (constant deceleration).
Tsdec : specify the time for S-curve deceleration section
 (constant jerk).

Tsacc

Tlacc
Tsacc Tsdec

Tldec
Tsdec

Operation Theorem • 41

Total time of acceleration is : Tlacc+2Tsacc. The following formula gives
the basic relationship between these parameters.

 max_vel = str_vel + accel*(Tlacc+Tsacc);
 str_vel = max_vel + decel *(Tldec+Tsdec);
 accel = Tsacc * jerk1;
 decel = Tsdec * jerk2;

where accel/decel represents the acceleration/deceleration rate at linear
accel./decel. section and are in unit of pps/sec. jerk1, jerk2 are in unit of
pps/sec^2. The minimum value for setting time of accel./decel. should be
0.
The S-curve profile motion functions are designed to always produce
smooth motion. If the time for linear/S-Curve acceleration parameters
combined with the final position don’t allow an axis to reach the maximum
velocity(i.e.: the moving distance is too small to reach max_vel), the
maximum velocity is automatically lowered and
smooth accel./decel. is made (see the following Figure). This means that
with moves that don’t reach maximum velocity may cause longer than
expected move times. In such a case, the smaller the moving distance,
the shorter the linear accel./decel. section becomes and the S-curve
section is not reduced unless the linear section is decreased to 0.

V
el

oc
ity

 (p
ps

)

Time (sec)

42 • Operation Theorem

The following two graphs show the results of experiments after executing
the unsymmetrical absolute S-curve motion command. Graph1 is the
typical result. of S-curve velocity profile. Graph2 is obtained when the
amount of command pulses is failed to let the velocity reach the
designated maximum velocity. The PCI-8132 automatically lower the
maximum velocity thus provide a smooth velocity profile.

Command of Graph1:
start_tas_move(axis, 500000, 100, 1000000, 0.05, 0.05, 0.2, 0.2);

The total accelerating time = 0.05+2*0.05 = 0.15 (second).
Total decelerating time = 0.2+2*0.2 = 0.6 (second).

Command of Graph2:
start_tas_move(axis, 200000, 100, 1000000, 0.05, 0.05, 0.2, 0.2);

♦ Relative Functions:
_8132_s_move(),_8132_rs_move(),_8132_tas_move(),
_8132_start_s_move(),_8132_start_rs_move(),_8132_start_tas_mo
ve() Refer to section 6.7
_8132_motion_done(): Refer to section 6.13

Operation Theorem • 43

4.1.5 Linear and Circular Interpolated Motion
In this mode, two axes (“X and Y” or “Z and U” axes) is controlled by linear
interpolation or circular interpolation by designating the number of pulses
respectively. “Interpolation between two axes” means the two axes start
simultaneously, and reach their ending points at the same time. For
example, in the Figure below, we want to move the axes from P0 to P1,
and hope the two axes start and stop simultaneously at a period of time
?t. Then the moving speed along X-axis and Y-axis will be?X/?t., ?Y/?t.
respectively.

The axis with larger numbers of moving pulses is the main axis, and the
other axis is the secondary axis. When both axes are set at the same
amount of pulses, the ‘X’ or ‘Z’ is the main axis. The speed relation
between main and secondary axes is as follows:

Composite Speed = Speed of main axis x

♦ Relative Functions:
_8132_move_xy(),_8132_start_move_xy(),_8132_arc_xy(): Refer to

section 6.9
_8132_set_move_speed(),_8132_set_move_accel(),_8132_set_arc_
division(),_8132_arc_optimization(),_8132_set_move_ratio(): Refer
to section 6.10

P0

P1

X-Axis

Y-
A

xi
s

?X

?Y

44 • Operation Theorem

4.1.6 Home Return Mode
In this mode, you can let the PCI-8132 output pulses until the conditions to
complete the home return is satisfied after writing the
_8132_home_move() command. Finish of home return can be checked
by _8132_motion_done() function. Or you can check finish of home
return accompanied with the interrupt function by setting bit 5 of int_factor
to 1 in _8132_set_int_factor() function.
Moving direction of motors in this mode is determined by the sign of
velocity parameter in _8132_home_move() function. A _8132_v_stop()
command during returning home can stop OUT and DIR from outputting
pulses.
Before writing _8132_home_move() command, configuration must be set
by _8132_set_home_config() function. . See also Section 4.3.3 for
further description. There are total three home return modes can be
selected by setting home_mode parameter in _8132_set_home_config()
function. The meaning of Home_mode will be described as the following:

1. Home_mode=0: ORG only, no index signal. The ORG signal

immediately stops OUT and DIR pins from outputting pulses to
complete the origin return.

time �

mvel
svel

Velocity
accel

ORG

� Writing home-move()
command to begin home
return operation

�ORG Signal ON

Operation Theorem • 45

2. Home_mode=1: both ORG and index signal are useful. The ORG signal
lets the PCI-8132 starts to wait for EZ signal and then EZ signal stops
OUT and DIR pins from outputting pulses to complete the home return.

3. Home_mode=2: both ORG and index signal are useful. The ORG signal

lets the PCI-8132 decelerate to starting velocity and then EZ signal
stops OUT and DIR pins from outputting pulses to complete the home
return.

Note: If the starting velocity is zero, the axis will work properly in home
mode 2.

♦ Relative Function:

 _8132_set_home_config(),_8132_home_move(),_8132_v_stop():
Refer to section 6.11

time� �

mvel

svel

Velocity accel

ORG

EZ

� Writing home-move()
command to begin home
return operation

�ORG Signal ON

�EZ Signal ON

time � �
�

mvel

svel

Velocity
accel

ORG

EZ

46 • Operation Theorem

4.1.7 Manual Pulser Mode
For manual operation of a device, you may use a manual pulser such as a
rotary encoder. The PCI-8132 can input signals from the pulser and output
corresponding pulses from the OUT and DIR pins, thereby allowing you to
simplify the external circuit and control the present position of axis. This
mode is effective between a _8132_manu_move() command is written
and a _8132_v_stop() command.
The PCI-8132 receives plus and minus pulses (CW/CCW) or 90 degrees
phase difference signals(AB phase) from the pulser at PA and PB pins.
The 90° phase difference signals can be input through multiplication by 1,
2 or 4. If the AB pahse input mode is selected, the PA and PB signals
should be with 90° phase shifted, and the position counting is increasing
when the PA signal is leasding the PB signal by 90° phase.
Also, one pulser may be used for ‘X’ and ‘Y’ axes while internally
distributing the signals appropriately to two axes. To set the input signal
modes of pulser, use _8132_set_manu_iptmode() function. Then write
_8132_manu_move() to begin manual operation function. User must
write _8132_v_stop() command in order to end this function and begins to
operate at another mode. User can choose pulse output axis by
_8132_set_manu_axis().
The error input of PA and PB can be used to generate IRQ. The following
two situations will be considered as error input of PA and PB signals. (1)
The PA and PB signals are changing simultaneously. (2) The input pulser
frequency is higher than the maximum output frequency 2.4M pps. Set
bit 14 of INT factor will enable the IRQ when error happen.
Maximum moving velocity in this mode can be limited by setting max_vel
parameter in _8132_manu_move() function.

♦ Relative Function:

_8132_set_manu_iptmode(),_8132_manu_move(),_8132_manu_axis(),
_8132_v_stop(): Refer to section 6.12

Operation Theorem • 47

4.2 Motor Driver Interface
The PCI-8132 provides the INP, ERC and ALM signals for servomotor
driver’s control interface. The INP and ALM are used for feedback the
servo driver’s status. The ERC is used to reset the servo driver’s
deviation counter under special conditions.

4.2.1 INP
Usually, servomotor driver with pulse train input has a deviation (position
error) counter to detect the deviation between the input pulse command
and feedback counter. The driver controls the motion of servomotor to
minimize the deviation until it becomes 0. Theoretically, the servomotor
operates with some time delay from command pulses . Accordingly,
when the pulse generator stops outputting pulses, the servomotor does
not stop but keep running until the deviation counter become zero. At
this moment, the servo driver sends out the in-position signal (INP) to the
pulse generator to indicate the motor stops running.
Usually, the PCI-8132 stops outputting pulses upon completion of
outputting designated pulses. But by setting inp_enable parameter in
_8132_set_inp_logic() function , you can delay the completion of
operation to the time when the INP signal is turned on. Status of
_8132_motion_done() and INT signal are also delayed. That is, when
performing under position control mode, the completion of
_8132_start_a_move(), _8132_start_r_move(), start_s_move()…
functions are delayed until INP signal is turned ON.
However, EL or ALM signal or the completion of home return does not
cause the INP signal to delay the timing of completion. The INP signal
may be a pulse signal, of which the shortest width is 5 micro seconds.
The in-position function can be enable or disable. The input logic polarity
isalso programmable by software function: _8132_set_inp_logic(). The
signal status can be monitored by software function:
_8132_get_io_status().

4.2.2 ALM
The ALM pin receives the alarm signal output from the servo driver. The
signal immediately stops the PCI-8132 from generating pulses or stops it
after deceleration. If the ALM signal is in the ON status at the start, the
PCI-8132 outputs the INT signal without generating any command pulse.
The ALM signal may be a pulse signal, of which the shortest width is a
time length of 5 micro seconds.

48 • Operation Theorem

You can change the input logic by _8132_set_alm_logic() function.
Whether or not the PCI-8132 is generating pulses, the ALM signal lets it
output the INT signal.. The ALM status can be monitored by software
function: _8132_get_io_status(). The ALM signal can generate IRQ by
setting the bit 2 of INT. factor in software function:
_8132_set_int_factor().

4.2.3 ERC
The deviation counter clear signal is inserted in the following 4 situations:

1. home return is complete;

2. the end-limit switch is active;

3. an alarm signal stops OUT and DIR signals;

4. an emergency stop command is issued by software operator.

Since the servomotor operates with some delay from pulse generated
from the PCI-8132, it keeps operating by responding to the position error
remaining in the deviation counter of the driver if the ±EL signal or the
completion of home return stops the PCL5023 from outputting pulses. The
ERC signal allows you to immediately stop the servomotor by resetting the
deviation counter to zero. The ERC signal is output as an one-shot signal.
The pulsewidth is a time length of 10ms. The ERC signal will automatically
output when ±EL signals, ALM signal is turned on to immediately stop the
servomotor. User can set the ERC pin output enable/disable by
_8132_set_erc_enable() function. ERC pin output is set output enabled
when initializing.

OFF
ON

ERC Output

Approximate 10ms

Operation Theorem • 49

4.3 The Limit Switch Interface and I/O Status
In this section, the following I/O signals’ operations are described.

� ±SD: Ramping Down sensor
� ±EL: End-limit sensor
� ORG: Origin position
� SVON and RDY

I/O status readback

In any operation mode, if an ±EL signal is active during moving condition,
it will cause PCI-8132 to stop output pulses automatically. If an SD signal
is active during moving condition, it will cause PCI-8132 to decelerate.

4.3.1 SD
The ramping-down signals are used to slow-down the control output
signals (OUT and DIR) when it is active. The signals are very useful to
protect the mechanism moving under high speed toward the mechanism
limit. PSD indicates ramping-sown signal in plus (+) direction and MSD
indicates ramping-down signal in minus (-) direction.
During varied speed operation in the home return mode or continuous
operation mode, the ramping-down signal in the moving direction lets the
output control signals (OUT and DIR) ramp down to the pre-setting
starting velocity.
The ramping-down function can be enable or disable by software function:
_8132_set_sd_logic(). The input logic polarity, level operation mode, or
latched input mode can also be set by this function. The signals status
can be monitored by _8132_get_io_status().

4.3.2 EL
The end-limit signals are used to stop the control output signals (OUT and
DIR) when the end-limit is active. PEL signal indicates end-limit in
positive (plus) direction. MEL signal indicates end-limit in negative
(minus) direction. When the output pulse signals (OUT and DIR) are
toward positive direction, the pulse train will be immediately stopped when
the PEL signal is inserted, while the MEL signal is meaningless in this
case, and vise versa. When the PEL is inserted and the output pulse is
fully stop, only the negative (minus) direction output pulse can be
generated for moving the motor to negative (minus) direction.

50 • Operation Theorem

The end-limit signals can be used to generate the IRQ by setting the bit 0
of INT. factor in software function: _8132_set_int_factor().
You can use either 'a' contact switch or 'b' contact switch by setting the dip
switch S1. The PCI-8132 is delivered from the factory with all bits of S1
set to OFF.
The signal status can be monitored by software function: _8132_get_
io_status().

4.3.3 ORG
When the motion controller is operated at the home return mode, the ORG
signal is used to stop the control output signals (OUT and DIR).
There are three home return modes, you can select one of them by setting
“home_mode” argument in software function: set_home_config(). Note
that if home_mode=1 or 2, the ORG signal mus t be ON or latched during
the EZ signal is inserted (EZ=0). The logic polarity of the ORG signal,
level input or latched input mode are selectable by software function:
_8132_set_ home_config().
After setting the configuration of home return mode by _8132_set
_home_config(), a home_move() command can perform the home return
function.
The ORG signal can also generate IRQ signal by setting the bit 5 of
interrupt reason register (or INT. factor) in software function:
_8132_set_int_factor().

4.3.4 SVON and RDY
The SVON signals are controlled by software function:
_8132_Set_SVON(). The function set the logic of AP0 (SVON) of
PCL5023. The signal status of SVON pins can be monitored by software
function: _8132_get_io_status().
RDY pins are dedicated for digital input use The status of this signal can
be monitored by software function get_io_status(). RDY pin is interfaced
with AP3 pin of PCL5023 through a photocoulpe. The RDY signal can
also generate IRQ signal by setting the bit 23 of INT. factor in software
function: set_int_factor(). Note that interrupt is generated when AP3
from high to low.

4.4 The Encoder Feedback Signals (EA, EB, EZ)
The PCI-8132 has a 28-bits binary up/down counter for managing the
present position for each axis. The counter counts signals input from EA
and EB pins.

Operation Theorem • 51

It can accept 2 kinds of pulse input.: (1). plus and minus pulses
input(CW/CCW mode); (2). 90° phase difference signals(AB phase mode).
90° phase difference signals may be selected to be multiplied by a factor
of 1,2 or 4. 4x AB phase mode is the most commonly used for incremental
encoder input. For example, if a rotary encoder has 2000 pulses per
phase (A or B phase), then the value read from the counter will be 8000
pulses per turn or –8000 pulses per turn depends on its turning direction.
These input modes can be selected by _8132_set_pls_iptmode()
function.
To enable the counters counting pulses input from (EA, EB) pins, set
“cnt_src” parameter of software function _8132_set_cnt_src() to 1.

♦ Plus and Minus Pulses Input Mode(CW/CCW Mode)
The pattern of pulses in this mode is the same as Dual Pulse Output
Mode in Pulse Command Output section, expect that the input pins are
EA and EB.
In this mode, pulse from EA causes the counter to count up, whereas EB
caused the counter to count down.

♦ 90° phase difference signals Input Mode(AB phase Mode)
In this mode, the EA signal is 90° phase leading or lagging in comparison
with EB signal. Where “lead” or “lag’ of phase difference between two
signals is caused by the turning direction of motors. The up/down counter
counts up when the phase of EA signal leads the phase of EB signal.
The following diagram shows the waveform.

EA

EB

Negative Direction

EA

EB

Positive Direction

52 • Operation Theorem

The encoder error interrupt is provided to detect abnormal situation.
Simultaneously changing of EA and EB signals will cause an encoder error.
If bit #14 of the interrupt factor register (INT factor) is set as 1, the IRQ will
be generated when detect encoder error during operation.
The index inputs (EZ) signals of the encoders are used as the “ZERO”
index. This signal is common on most of the rotational motors. EZ can
be used to define the absolute position of the mechanism. The input
logic polarity of the EZ signals is programmable by software function
_8132_set_home_config(). The EZ signals status of the four axis can be
monitored by _8132_get_io_status().

♦ Relative Function:

_8132_set_cnt_src(),_8132_set_pls_iptmode(): Refer to section 6.4

4.5 Multiple PCI-8132 Cards Operation
The software fuction library support maximum up to 12 PCI-8132 Cards,
that means maximum up to 24 axes of motors can be controlled. Since
PCI-8132 has the characteristic of Plug-and-Play, users do not have to
care about setting the Based address and IRQ level of cards. They are
automatically assigned by the BIOS of system when booting up. Users
can utilize Motion Creator to check if the plugged PCI-8132 cards are
successfully installed and see the Baseaddress and IRQ level assigned by
BIOS.
One thing needed to be noticed by users is to identify the card number of
PCI-8132 when multiple cards are applied. The card number of one
PCI-8132 depends on the locations on the PCI slots. They are numbered
either from left to right or right to left on the PCI slots. These card numbers
will effect the corresponding axis number on the cards. And the axis
number is the first argument for most funcions called in the library. So it
is important to identify the axis number before writing application
programs. For example, if 3 PCI-8132 cards are plugged in the PCI slots.
Then the corresponding axis number on each card will be:

Axis No.
Card No.

Axis 1 Axis 2

1 0 1
2 2 3
3 4 5

Operation Theorem • 53

If we want to accelerate Axis 1 of Card2 from 0 to 10000pps in 0.5sec for
Constant Velocity Mode operation. The axis number should be 6. The
code on the program will be:
 _8132_v_move(2, 0, 10000, 0.5);
To determine the right card number, Try and Error may be necessary
before application. Motion Creator can be utilized to minimize the search
time.
For applications needed to move many axes simultaneously on multiple
PCI_8132 cards, users should follow the connection diagrams in Section
3.12 to make connections between their CN3 connectors. Several
functions illustrated in Section 6.8 may be useful when writing programs
for such applications.

♦ Relative Function:

_8132_start_move_all(), _8132_move_all(), _8132_wait_for_all(): Refer
to section 6.8

4.6 Change Speed on the Fly
You can change the velocity profile of command pulse ouput during
operation by _8132_v_change() function. This function changes the
maximum velocity setting during operation. However, if you operate under
“Preset Mode” (like start_a_move(),…), you are not allowed to change the
acceleration parameter during operation because the deceleration point is
pre-determined. But changing the acceleration parameter when operating
under “Constant Velocity Mode” is valid. Changing speed pattern on the fly
is valid no matter what you choose “Trapezoidal Velocity Profile” or
“S-curve Velocity Profile”. Here we use an example of Trapezoidal velocity
profile to illustarte this function.
Example: There are 3 speed change sensor during an absolute move for
200000 pulses. Initial maximum speed is 10000pps. Change to 25000pps
if Sensor 1 is touched. Change to 50000pps if Sensor 2 is touched.
Change to 100000pps if Sensor 3 is touched. Then the code for this
application and the resulting velocity profiles are shown below.
User must set _8132_fix_max_speed() before any PTP motion in order to
get the better performance of speed change. The value in this function is
the possible maximum speed during the PTP motion.

54 • Operation Theorem

#include “pci_8132.h”

_8132_fix_max_speed(axis,100000);
_8132_start_a_move(axis, 200000.0, 1000, 10000, 0.02);

while(!_8132_motion_done(axis))
 {
 // Get Sensor’s information from other I/O card

 if((Sensor1==High) && (Sensor2==Low) && (Sensor3 == Low))
 _8132_v_change(axis, 25000, 0.02);
 else if((Sensor1==Low) && (Sensor2==High) && (Sensor3 == Low))
 _8132_v_change(axis, 50000, 0.02);
 else if((Sensor1==Low) && (Sensor2==Low) && (Sensor3 ==
High))
 _8132_v_change(axis, 100000, 0.02);
 }
Where the informations of three sensors are acquired from other I/O card.
And the resulting velocity profile from experiment is shown below.

Motor

Sensor 2 Sensor 3

Pos=0 Pos=200000

Moving part

Sensor 1

Operation Theorem • 55

♦ Relative Function:

_8132_v_change(), _8132_fix_max_speed(): Refer to section 6.5

4.7 Position Comparison
The position comparison function is fulfilled by the FPGA comparator on
board. Please refer to the following figure. The comparator is applied to
compare the preset comparison data with the contents of its counter under
different modes. These comparison modes consist of different logical
comparison (>/=/<) of different counters (1 and/or 2).

5023
ASIC

Comparator
Counter 1/2

3

2

1

2

3

1

_8132_Set_CompHome
_8132_Set_CompCnt
_8132_Get_CompCnt
_8132_Set_CompMode

_8132_Set_CompInt
_8132_Set_CompData
_8132_Get_CompData
_8132_Get_CompSts

Counter Source EA or EB

4

4 Motion Command of 5023

To make use of position comparison function the following guidelines will
be of much help.
1.Decides the comparison mode : Use_8132_Set_CompMode function

and consider the counter source and the comparison conditions .
2.Sets the counter initial value: There are two ways to set the counter

Directly use _8132_Set_CompCnt function to set its value
Use _8132_Set_CompHome to set its value to 0 automatically after
homing

3.Enables the interrupt function : Use _8132_Set_CompInt function
4.Sets up the desired comparison data: Use _8132_ Set_CompData

function.
5.Gets the status of the comparator : Use _8132_Get_CompSts
6.Sending motion commands :After setting up the comparator users can

send other moiton control functions eg. start_a_move ,or v_move etc .
The comparator will fulfill the comparison function without interfering the
CPU.

56 • Operation Theorem

For user who want to compare multiple data continuously with the
comparator
The method of building comparison tables is also provided as shown in
the following

1. U16 _8132_Build_Comp_Table(U16 axis, I32 *table, I16 Size);

 I32 *table: an one dimension array pointer for compare positions
 I16 Size: Total amount of position compare points (Maximum=1024)

 2. U16 _8132_Set_Comp_Table(U16 axis, U16 logic);
 U16 logic: enable/disable position compare table

(0 for disable, 1 for enable)

Here are two examples of using position comparison functions.

The first example is typically in the application of machine vision.

In this application the table is controlled by the motion command and the
CCD Camera is controlled by the position comparison output of PCI-8132.
The image of moving object can be get in this way easily.

t

v

1 2 3 4 5 6

CCD
Camera

Operation Theorem • 57

The example code is shown in the following
_8132_Set_CompHome(0);
for(i=0 ; i<6 ; i++)
 CompTable[i] = 10000 + 10000 * i; ' Set Compare Data
 _8132_Build_Comp_Table(0, CompTable, 6);
 _8132_Set_CompMode(0, 0);
 _8132_Set_CompInt(Axis0, 1);
 _8132_Set_Comp_Table(Axis0, 1);
 _8132_start_r_move(Axis0, 80000, 0,10000, 0.5);

The second example is a fly-cut application

In this application the cutter is moved forward and backward on the x-axis
and the knife is moved up and down by the y-axis. The comparator is used
to compare the actual position in x-axis with the encoder feedback on
y-axis with the encoder mounted under the belt. I.e.The comparator
counter source in this case is the encoder under the belt but not the
encoder on the back of the motor. In this application the cutter will cut
down when the motor reaches the same speed as the belt and the
comparison condition is match.
The comparator in the PCI-8132 generates an interrupt to move the knife
down to cut the belt.
The following graph shows the result of position compare trigger output. A
compare point table is triggered during a start_a_move() function. The
compare table contents 1024 points from 10000 to 112300 with 100 pulses

t

v

1

E

Motor E

2

58 • Operation Theorem

interval. It can be represented as follows:
 For(i = 0 ; i < 1024; i++)

CMP_TBL(i)= 10000+100*i;

Once the axis passes by these preset points during a moving function, the
corresponding compare output pin will send a pulse with 100 us width to
trigger other device to work. The moving command for this example is as
follows:
 start_a_move(AXIS0, 150000, 1000, 160000, 0.2);
The maximum command for this function is 160k pps. So the axis takes
about 625us to travel 100 pulses long and the width of trigger pulse is
about 100us. (The maximum frequency for trigger signal is about 10k)

♦ Relative Function:
_8132_Set_CompHome(),_8132_Build_Comp_Table(),_8132_Set_Comp
Mode(), _8132_Set_CompInt(),_8132_Set_Comp_Table(): Refer to
section 6.19

Operation Theorem • 59

4.8 Interrupt Control
The PCI-8132 motion controller can generate INT signal to host PC
according to 13 types of factors, refer to _8132_set_int_factor() function
for more details.. The INT signal is output when one or more interrupt
factors occur on either axis. To judge on which axis the interrupt factors
occur, use _8132_get_int_axis() function. The interrupt status is not
closed until _8132_get_int_status() function is performed. There is a little
difference between using DOS or Windows 95/NT to perform interrupt
control. Users should refer to Section 6.17 for more details. Here we use
an example on Windows OS to demonstrate how to perform interrupt
control with the function l ibrary we provided.

♦ Use Thread to deal with Interrupt under Windows NT/95
In order to detect the interrupt signal from PCI-8132 under Windows
NT/95, user must create a thread routine first. Then use APIs provided by
PCI-8132 to get the interrupt signal. The sample program is as follows :

Situatuins: Assume that we have one card (2 axes) and want to receive
Home Return and Preset Movement Finish interrupt signal from axis 1.
Steps:
1. Define a Global Value to deal with interrupt event

HANDLE hEvent[2];
volatile bool ThreadOn;

2. In Initializing Section (you must Initialize PCI-8132 properly first),
set interrupt types and enable an event for each axis.

set_int_factor(1,0x002040);
_8132_Set_INT_Control(0,1);
_8132_INT_Enable(0,&hEvent[0]);

Note: For each card, you must assign 2 4-events -array in
_8132_INT_Enable function.

3. Define a Global Function (Thread Body). Use WaitForSingleObject() or

WaitForMultipleObjects() to wait events. Remenber to reset this event
after you get the event.

UINT IntThreadProc(LPVOID pParam)
{
 U32 IntSts;

 while(ThreadOn=TRUE)

60 • Operation Theorem

 {
 ::WaitForSingleObject(hEvent[1],INFINITE);
 _8132_get_int_status(1,&IntSts);
 ::ResetEvent(hEvent[1]);
 }

 return 0;
}

4. Start the thread(Use a boolean value to control the thread’s life)

ThreadOn=TRUE;
AfxBeginThread(IntThreadProc,GetSafeHwnd(),THREAD_PRIORITY_
HIGHEST);

5. Before exit the program, remember to let the thread go to end naturally.
ThreadOn=FALSE;

For each time when a preset movement or homing of axis 2 is completed,
this program will receive a interrupt signal from PCI-8132.

♦ PCI-8132 Interrupt Service Routine (ISR) with DOS
A DOS function library is equipped with PCI-8132 for users to develop
applications under DOS environment. This library also provide some
functions for users to work with ISR. It is highly recommended to write
programs according to the following example for applications should work
with ISR. Since PCI-bus has the ability to do IRQ sharing when multiple
PCI-8132 are applied, each PCI-8132 should have a corresponding ISR.
For users who use the library we provide, the names of ISR are fixed,
such as: _8132_isr0(void), _8132_isr1(void)…etc. The sample program
are described as below. It assume two PCI-8132 are plugged on the slot ,
axis 1 and axis5 are asked to work with ISR.:

// header file declare
#include “pci_8132.h”

PCI_INFO info;

#define axis1 1
#define axis5 5
U16 int_flag=0, irq_axs;
U32 irq_sts;

Operation Theorem • 61

/**/
/* MAIN Program

*/
/**/
void main(void)
{
 U16 i, bn=0, status;
 _8132_Initial(&bn, &info);
 // Do System configuration for all I/O signals
…………………..
//
// Set Interrupt factors for axis1, axis5
 set_int_factor(axis1, factor1);
 set_int_factor(axis5, factor2);
// Enable Interrupt for both PCI-8132 cards
 for(i=0; i<bn; i++)
 _8132_Set_INT_Enable(i, 1);
// Main program for application
…………………..
// End of Main Program
 for(i=0; i<bn; i++)
 _8132_Close(i); // Close all IRQ resources
}

/**/
/* ISR begin here

*/
/**/
void interrupt _8132_isr0(void)
{
 U16 int_axis;
 U16 irq_status;
//
 disable(); // disable all interrupt
 _8132_Get_IRQ_Status(0, &irq_status);
 if(irq_status) // Judge if INT for card 0?
 {
 _8132_get_int_axis(&int_axis);
 int_flag = 1;
 irq_axs = int_axis;
 _8132_get_int_status(int_axis, &irq_sts);
 }
 else
 _chain_intr(pcinfo.old_isr[0]);// If not, chain to other INT
//

62 • Operation Theorem

 outportb(0x20, 0x20); // End of INT
 outportb(0xA0, 0x20);
//---
 enable(); // enable interrupt request

}

void interrupt _8132_isr1(void)
{
 U16 int_axis;
 U16 irq_status;
//
 disable(); // disable all interrupt
 _8132_Get_IRQ_Status(1, &irq_status);
 if(irq_status) // Judge if INT for card 1?
 {
 _8132_get_int_axis(&int_axis);
 int_flag = 1;
 irq_axs = int_axis;
 _8132_get_int_status(int_axis, &irq_sts);
 }
 else
 _chain_intr(pcinfo.old_isr[1]);// If not, chain to other INT
//
 outportb(0x20, 0x20); // End of INT
 outportb(0xA0, 0x20);
//---
 enable(); // enable interrupt request
}

So with the sample, user can get the interrupt signal about each axis in the
motion control system.

Function Library • 63

5

Motion Creator

After installing all the hardware properly according to Chapter 2, 3,
configuring cards and checkout are required before running. This chapter
gives guidelines for establishing a control system and manually exercising
the PCI-8132 cards to verify correct operation. Motion Creator provides a
simple yet powerful means to setup, configure, test and debug motion
control system that uses PCI-8132 cards.
Note that Motion Creator is available only for Windows 95/98 or Windows
NT with the screen resolution higher than 800x600 environment and can
not run on DOS.

64 • Function Library

5.1 Main Menu
Main Menu will appear when executing Motion Creator. Figure 5.1 shows
the Main Menu.

Figure 5.1 Main Menu of Motion Creator

From main menu window all PCI-8132 cards and their axes and the
corresponding status can be viewed. First of all, check if all the PCI-8132
cards which are plugged in the PCI-Bus can be viewed on “Select Card”
column. Next select the card and axis you want to configure and operate.
Since there are totally four axes on a card, the axis number of first axis on
n-the card will be numbered as 4*(n-1). Base address and IRQ level of the
card are also shown on this window.

Function Library • 65

5.2 Axis Configuration Window
Press the “Config Axis” button on the Main Menu will enter the Axis
Configuration window. Figure 5.2 shows the window.

Figure 5.2 Axis Configuration Window

the Axis Configuration window includes the following setting items which
cover most I/O signals of PCI-8132 cards and part of the interrupt factors.

♦ Pulse I/O Mode:
Related functions:

� set_pls_outmode() for “Pulse Output Mode” property.
� set_cnt_src() for “Pulse Input Active” property.
� set_pls_iptmode() for “Pulse Input Mode” property.

66 • Function Library

♦ Mechanical Signal:
Related functions:

� set_home_config() for “Home Signal” and “Index Signal” property.
� set_sd_logic() for “Slow Down Point Signal” property.

♦ Servo Motor Signal:
Related functions:

� set_alm_logic() for “Alarm Signal” property.
� set_inp_logic() for “INP” property.

♦ Manual Pulser Input Mode:
Related functions:

� set_manu_iptmode() for “Manual Pulser Input Mode” property.
♦ Interrupt Factor:
Related functions:

� set_int_factor() for “INT Factor” property.
♦ Home Mode:
Related functions:

� set_home_config() for “Home Mode” property.

The details of each section are shown at its related functions.
After selecting all the items you want to configure, user can choose to
push the “Save Configurations “ button on the right bottom side. If you
push this button, all the configurations you select for system integration
will be saved to a file called “8132.cfg”. This file is very helpful when user
is developing their own application programs. The following example
illustrate how to make use of this function. This example program is shown
in C language form.

 Main()
{

 _8132_initial(); // Initialize the PCI-8132 cards
 _8132_Set_Config(); // Configure PCI-8132 cards according

: // to
8132.cfg

:
}

Function Library • 67

Where _8132_initial() and _8132_Set_Config() can be called from the
function library we provide. _8132_initial() should be the first function
called within main{} function. It will check all the PCI-8132 existed and give
the card a base address and IRQ level. _8132_Set_Config() will configure
the PCI-8132 cards according to “8132.cfg”. That is, the contents of Axis
Configuration Window can be transferred to the application program by
this function called.

Figure 5.3 Axis Operation window

68 • Function Library

5.3 Axis Operation Windows
Press the “Operate Axis” button on the Main Menu or Axis Configuration
Menu will enter the Axis Configuration window. Figure 5.3 shows the
window. User can use this window to command motion, monitor all the I/O
status for the selected axis. This window includes the following displays
and controls:

� Motion Status Display,
� Axis Status Display
� I/O Status Display
� Set Position Control
� Operation Mode Control
� Motion Parameter Control
� Play Key Control
� Velocity Profile Selection
� Repeat Mode

5.3.1 Motion Status Display
The Motion Status display provides a real-time display of the axis’s
position in the Command, Actual, Error fields. Motion Creator
automatically updates these command, actual and error displays
whenever any of the values change.
When Pulse Input Active property is Axis Configuration Window is set to
Enable, the Actual Position read will be from the external encoder
inputs(EA, EB). Else, it will display the command pulse output when set to
Disable.

5.3.2 Axis Status Display
The Axis Status display provides a real-time display of the axis’s status.
It displays the status(Yes(for logical True) or No(for logical False)) for In
Position or In Motion or displays there is Interrupt Events Occurs. When In
motion, you can check the motion done status in the next column. In
Position range can be specified in the Pos_Err column.

Function Library • 69

5.3.3 I/O Status Display
Use I/O Status display to monitor the all the I/O status of PCI-8132. The
Green Light represents ON status, Red Light represents OFF status and
BLACK LIGHT represents that I/O function is disabled. The ON/OFF
status is read based on the setting logic in Axis Configuration window.

5.3.4 Set Position Control
Use the Set Position Control to arbitrarily change the actual position of
axis.
Write the position wanting to specify into the column and click the “Set
Position” button will set the actual position to the specified position.

5.3.5 Operation Mode Control
There are four Operation Modes mentioned in Chapter 4 can be tested in
the Axis Operation window. They are “Continuous Move Mode”, “Preset
Mode Operation”, “Home Mode Operation”, “Manual Mode Operation”.

♦ Continuous Move Mode:
Press “Continuous Move” button will enable Continuous Velocity motion
as specified by values entered in “Start Velocity” and “Maximum Velocity”
2 fields of Motion Parameters Control. The steady state moving velocity
will be as specified by “Maximum Velocity”. Press → to move forward or ←
to move backward. Press “STOP” to stop moving.

♦ Preset Mode:
Press “Absolute Mode” to enable absolute motion as specified by values
entered in “Position 1” and “Position 2” 2 fields. When selected, “Distance”
field for “Relative Mode” is disabled. Press → to move to Position 2 or ←
to move to Position 1. Press “STOP” to stop motion.
Also, user can specify repetitive motion in “Absolute Mode” by setting
“Repeat Mode” to “ON” state. When “Repeat Mode” goes “ON” and either
→ or ← is pressed., axis starts repetitive motion between Position 1 and
Position 2 until “Repeat Mode” goes “OFF” as “STOP” are clicked.
Press “Relative Mode” to enable relative motion as specified by values
entered in “Distance” fields. When selected, “Position 1” and “Position 2”
fields for “Absolute Mode” is disabled. Press → to move forward to a
distance relative to present position as specified by “Distance” or ← to
move backward.
Note that both “Absolute Mode” and “Relative Mode” are operated under a
trapezoidal velocity profile as specified by Motion Parameters Control.

70 • Function Library

♦ Home Return Mode:
Press “Home Move” button will enable Home Return motion. The home
returning velocity is specified by settings in Motion Parameters Control.
The arriving condition for Home Return Mode is specified in Axis
Configuration Window. Press → to begin returning home function. Press
“STOP” to stop moving.

♦ Manual Pulser Mode:
Press “Manual Pulser Move” button will enable motion controlled by hand
wheel pulser. Using this function, user can manually operate the axis thus
verify operation. The maximum moving velocity is limited as specified by
“Maximum Velocity”. Press “STOP” to end this mode.
Do remember to press “STOP” to end operation under this mode.
Otherwise, operations under other modes will be inhibited.

5.3.6 Motion Parameters Control
Use the Motion Parameters with the Operation Mode Control to command
motion.

� Starting Velocity: Specify the starting moving speed in pulses per
second.

� Maximum Velocity: Specify the maximum moving speed in pulses
per second.

� Acceleration: Specify the acceleration in pulses per second
square.

� Move delay: Specify time in mini seconds between movement.
� S curve Acc/dec Time: Specify time in mini second for S_curve

Movement.

5.3.7 Play Key Control
Use buttons in Play Key Control to begin or end operation.

: click button under this symbol to begin moving to Positions 2 in Absolute
Mode or moving forward in other modes.

: click button under this symbol to begin moving to Positions 1 in Absolute
Mode or moving backward in other modes.

Function Library • 71

: click button under this symbol to stop motion under any mode. Note that
this button is always in latch mode. Click again to release “STOP”
function.

5.3.8 Velocity Profile Selection

: Click T_Curve or S_curve to select preset movement velocity profile. The
relative parameter settings are in Motion Parameter Frame.

5.3.9 Repeat Mode

: Repeat mode is only for absolute and relative mode. After choosing a
operation mode and click repeat mode on, you can press play key to make
axis run between position 1 and 2 (in absolute mode) or run between a
range (relative mode). It is useful on demonstrations. Use Stop button to
stop this operation.

72 • Function Library

5.4 2-D Motion Windows
Press 2 -D button in operating window will enter this window. This is for 2 -D
motion test. It includes the following topics:

� Linear Interpolation
� Circular Interpolation
� Incremental Jog
� Continous Jog
� Other Control Objects

Function Library • 73

5.4.1 Linear Interpolation

: After setting motion parameters correctly in “Interpolation Parameter
Setting Frame”, you can enter the destination in this frame. Then click Run
button to start linear interpolation motion.

5.4.2 Circular Interpolation
The setting for circular interpolation mode has three additional parameters
in “Interpolation Parameter Setting Frame”. They are arc degree, division
axis and optimize option. Please refer to section 6.9 to set them.
After setting these parameters, you can enter the arc center and degree in
“Interpolation Command Frame”. Click Run button to start circular
interpolation motion.

5.4.3 Continuous Jog

: Continuous Jog means that when you press one directional button, the
axis will continuously move with an increasing speed. The longer you
press, the faster it runs. When you un-press the button, the axis will stop
immediately.

74 • Function Library

5.4.4 Incremental Jog

: Incremental jog means that when you click one directional button, the
axis will step a distance according to the Step-Size’s setting.

5.4.5 Other Control Objects

Function Library • 75

The above figure shows the result of circular interpolation mode. The
graph screen is an Active X object from ADLINK Daqbench®. There are
some relative control objects as follows:

1. Zoom
2. Graph Range
3. Origin Position

The Zoom In/Out buttons are used for changing the display range
according to a scale number beside the button. The “Graph Range Frame”
controls X or Y axis’s display range. The “Origin Position Frame” let user
to pan the display location.
There are two home return buttons at the left-down corner of this window.
It is useful when user need to return to the origin.

76 • Function Library

6

Function Library

This chapter describes the supporting software for PCI-8132 cards. User
can use these functions to develop application program in C or Visual
Basic or C++ language.

6.1 List of Functions

Initialization Section 6.3
_8132_Initial(card_no); Software initialization
_8132_Close(card_no); Software Close
_8132_Set_Config(void); Configure PCI-8132 according to

Motion Creator

Pulse Input/Output Configuration Section 6.4
_8132_set_pls_outmode(axis,
pls_outmode);

Set pulse command output mode

_8132_set_pls_iptmode(axis, pls_iptmode); Set encoder input mode
_8132_set_cnt_src(axis, cnt_src); Set counter input source

Continuously Motion Mode Section 6.5
_8132_v_move(axis, svel, mvel, Tacc); Accelerate an axis to a constant

velocity with trapezoidal profile

_8132_sv_move(axis, svel, mvel, Tlacc,
Tsacc);

Accelerate an axis to a constant
velocity with S-curve profile

_8132_v_change(axis, mvel, Tacc); Change speed on the fly
_8132_v_stop(axis, Tdec); Decelerate to stop
_8132_fix_max_speed(axis,max_speed); Fix max speed for v_change

Trapezoidal Motion Mode Section6.6
_8132_a_move(axis, pos, svel, mvel, Tacc); Perform an absolute trapezoidal

profile move

Function Library • 77

_8132_start_a_move(axis, pos, svel, mvel,
Tacc);

Begin an absolute trapezidal
profile move

_8132_r_move(axis, dist, svel, mvel, Tacc); Perform a relative trapezoidal
profile move

_8132_start_r_move(axis, dist, svel, mvel,
Tacc);

Begin a relative trapezoidal
profile move

_8132_t_move(axis, dist, svel, mvel, Tacc,
Tdec);

Perform a relative
non-symmetrical trapezoidal
profile move

_8132_start_t_move(axis, dist, svel, mvel,
Tacc, Tdec);

Begin a relative non-symmetrical
trapezidal profile move

_8132_start_ta_move(axis, pos, svel, mvel,
Tacc, Tdec);

Begin an absolute
non-symmetrical trapezidal
profile move

_8132_ta_move(axis, pos, svel, mvel, Tacc,
Tdec);

Perform an absolute
non-symmetrical trapezoidal
profile move

_8132_wait_for_done(axis); Wait for an axis to finish

S-Curve Profile Motion Section 6.7
_8132_s_move(axis, pos, svel, mvel, Tlacc,
Tsacc);

Perform an absolute S-curve
profile move

_8132_start_s_move(axis, pos, svel, mvel,
Tlacc, Tsacc);

Begin an absolute S-curve profile
move

_8132_rs_move(axis, dist, svel, mvel,
Tlacc, Tsacc);

Perform a relative S-curve profile
move

_8132_start_rs_move(axis, dist, svel, mvel,
Tlacc, Tsacc);

Begin a relative S-curve profile
move

_8132_tas_move(axis, pos, svel, mvel,
Tlacc, Tsacc, Tldec, Tsdec);

Perform an absolute
non-symmetrical S-curve profile
move

_8132_start_tas_move(axis, pos, svel,
mvel, Tlacc, Tsacc, Tldec, Tsdec);

Begin an absolute
non-symmetrical S-curve profile
move

Multiple Axes Point to Point Motion Section 6.8
_8132_start_move_all(n_axes, *axes, *pos,
*svel, *mvel, *Tacc);

Begin a multi-axis trapezodial
profile move

_8132_move_all(n_axes, *axes, *pos,
*svel, *mvel, *Tacc);

Perform a multi-axis trapezodial
profile move

_8132_wait_for_all(n_axes, *axes); Wait for all axes to finish

Linear / Circular Interpolated Motion Section 6.9
_8132_move_xy(cardNo, x, y); 2-axis linear interpolated move

for X & Y

_8132_arc_xy(cardNo, x_center, y_center,
angle);

2-axis circular interpolated move
for X & Y

_8132_start_move_xy(cardNo, x, y) 2-axis linear interpolated move
for X & Y

78 • Function Library

_8132_recover_xy(axisno); Return to single axis mode

Interpolation Parameters Configuring Section 6.10
_8132_map_axes(n_axes, *map_array);

Maps coordinated motion axes x,
y, z….

_8132_set_move_speed(svel, mvel); Set the vector velocity
_8132_set_move_accel(Tacc); Set the vector acceleration time
_8132_set_move_accel(Tlacc,Tsacc); Set s-curve vector acceleration

time

_8132_set_arc_division(axis, degrees); Set the interpolation arc segment
length

_8132_arc_optimization(optimize); Enable/Disable optimum
acceleration calculations for arce

_8132_set_move_ratio(axis, ratio); Set the axis resolution ratios

Home Return Mode Section 6.11
_8132_set_home_config(axis, mode,
org_logic, org_latch, index_logic);

Set or get the home/index logic
configuration

_8132_home_move(axis, svel, mvel, accel); Begin a home return action

Manual Pulser Motion Section 6.12
_8132_set_manu_iptmode(axis, ipt_mode,
op_mode);

Set pulser input mode and
operation mode

_8132_manu_move(axis, mvel); Begin a manual pulser
movement

_8132_set_manu_axis(cardno,
manu_axis);

Select manual pulser axis

Motion Status Section 6.13
_8132_Motion_done(axis); Returns TRUE if motion done

Servo Drive Interface Section 6.14
_8132_set_alm_logic(axis, alm_logic,
alm_mode);

Set alarm logic and alarm mode

_8132_set_inp_logic(axis, inp_logic,
inp_enable);

Set In-Position logic and
enable/disable

_8132_set_sd_logic(axis, sd_logic,
sd_latch, sd_enable);

Set slow down point logic and
enable/disable

_8132_set_erc_enable(axis, erc_enable) Set the ERC output
enable/disable

I/O Control and Monitoring Section 6.15
_8132_Set_SVON(axis, on_off); Set the state of general purpose

output bit

_8132_get_io_status(axis, *io_status); Get all the I/O staus of PCI-8132

Position Control Section 6.16

Function Library • 79

_8132_set/get_position(axis, pos); Set or get current actual position
_8132_set/get_command(axis, pos); Set or get current command

position

Interrupt Control Section 6.17
_8132_Set_INT_ENABLE(axis, intFlag); Set Interrupt enable
_8132_set_int_factor(axis, int_factor); Set Interrupt generationg factors
_8132_get_int_axis(*int_axis); Get the axis which generates

interrupt (DOS)

_8132_get_int_status(axis, *int_status); Get the interrupting status of axis

Digital I/O Control Section 6.18
_8132_DO(axis, DoData); Output digital channel
_8132_DI(axis, *DiData); Input digital channel

Position Compare Control Section 6.19
_8132_Get_CompCnt Get counter value from

comparator

_8132_Set_CompCnt Set counter value in comparator
_8132_Set_CompMode Set compare mode
_8132_Set_CompData Set comparator value
_8132_Get_CompData Get current comparator value
_8132_Set_CompInt Enable comparator Interrupt
_8132_Set_CompHome Set comparator origin
_8132_Get_CompSts Get comparator status
_8132_Build_Comp_Table Build compare table
_8132_Set_Comp_Table Enable/Disable compare table
_8132_Build_Comp_Function Build a linear trigger table by a

function

80 • Function Library

6.2 C/C++ Programming Library
This section gives the details of all the functions. The function prototypes
and some common data types are decelerated in PCI-8132.H. These
data types are used by PCI-8132 library. We suggest you to use these
data types in your application programs. The following table shows the
data type names and their range.

Type Name Description Range

U8 8-bit ASCII character 0 to 255
I16 16-bit signed integer -32768 to 32767
U16 16-bit unsigned integer 0 to 65535
I32 32-bit signed long integer -2147483648 to 2147483647
U32 32-bit unsigned long integer 0 to 4294967295
F32 32-bit single-precision floating-point -3.402823E38 to 3.402823E38

F64 64-bit double-precision
floating-point

-1.797683134862315E308 to
1.797683134862315E309

Boolean Boolean logic value TRUE, FALSE

The functions of PCI-8132’s software drivers use full-names to represent
the functions' real meaning. The naming convention rules are :

In DOS Environment :

_{hardware_model}_{action_name}. e.g. _8132_Initial().

In order to recognize the difference between C and VB function, A
capital "B" is put on the head of each function name of the Visual
Basic. e.g. B_8132_Initial().

Function Library • 81

6.3 Initialization
@ Name

_8132_Initial – Software Initialization for PCI-8132
_8132_Close – Software release resources of PCI-8132
_8132_Set_Config – Configure PCI-8132 according to Motion Creator
_8132_Get_IRQ_Channel – Get the PCI-8132 card’s IRQ number
_8132_Get_ Base_Addr – Get the PCI-8132 card’s base address

@ Description
_8132_Initial :

This function is used to initialize PCI-8132 card. Every PCI-8132 card
has to be initialized by this function before calling other functions.

_8132_Close :
This function is used to close PCI-8132 card and release the
PCI-8132 related resources, which should be called at the end of an
application.

_8132_Set_Config :
This function is used to configure PCI-8132 card. All the I/O
configurations and some operating modes appeared on “Axis
Configuration Window” of Motion Creator will be set to PCI-8132.
Click “Save Configuration” button on the “Axis Configuration Window”
if you want to use this function in the application program. Click “Save
Configuration” button will save all the configurations to a file call
“8132.cfg”. This file will appear in the “WINDOWS\SYSTEM\”
directory.

_8132_Get_IRQ_Channel :
This function is used to get the PCI-8132 card’s IRQ number. (This
function just suport Window 95 and Window NT platform only).

_8132_Get_Base_Addr :
This function is used to get the PCI-8132 card’s base address. (This
function just suport Window 95 and Window NT platform only).

@ Syntax
C/C++ (DOS)

U16 _8132_Initial (U16 *existCards, PCI_INFO *info)
U16 _8132_Close(U16 cardNo)
U16 _8132_Set_Config(char* filename)

C/C++ (Windows 95/NT)
U16 _8132_Initial(U16 *existCards, PCI_INFO *pciInfo) (Windows 95 Only)
U16 _8132_Initial(U16 cardNo)(Windows NT Only)
U16 _8132_Close(U16 cardNo)(Windows NT Only)
U16 _8132_Set_Config(char *fileName)
void _8132_Get_IRQ_Channel(U16 cardNo, U16 *irq_no)
void _8132_Get_Base_Addr(U16 cardNo, U16 *base_addr)

82 • Function Library

Visual Basic (Windows 95/NT)
B_8132_Initial (existCards As Integer, pciInfo As PCI_INFO) As

Integer(Windows 95 Only)

B_8132_Initial (ByVal cardNo As Long) As Integer (Windows NT Only)
B_8132_Close (ByVal cardNo As Long) As Integer (Windows NT Only)
B_8132_Set_Config (ByVal fileName As String) As Integer
B_8132_Get_IRQ_Channel (ByVal cardno As Integer, irq_no As Integer)
B_8132_Get_Base_Addr (ByVal cardno As Integer, base_addr As Integer)

@ Argument
existCards : numbers of existing PCI-8132 cards
info: relative information of the PCI-8132 cards
cardNo: The PCI-8132 card index number.

@ Return Code
 ERR_NoError

ERR_BoardNoInit
ERR_PCIBiosNotExist

Function Library • 83

6.4 Pulse Input / Output Configuration
@ Name

_8132_set_pls_outmode – Set the configuration for pulse command
output.

_8132_set_pls_iptmode – Set the configuration for feedback pulse
input.

_8132_set_cnt_src – Enable/Disable the external feedback pulse
input

@ Description
_8132_set_pls_outmode:

Configure the output modes of command pulse. There are two modes
for command pulse output.

_8132_set_pls_iptmode:
Configure the input modes of external feedback pulse. There are four
types for feedback pulse input. Note that this function makes sense
only when cnt_src parameter in set_cnt_src() function is enabled.

_8132_set_cnt_src:
If external encoder feedback is available in the system, set the
cnt_src parameter in this function to Enabled state. Then internal
28-bit up/down counter will count according configuration of
set_pls_iptmode() function.
Or the counter will count the command pulse output.

@ Syntax
C/C++ (DOS, Windows 95/NT)

U16 _8132_set_pls_outmode(I16 axis, I16 pls_outmode)
U16 _8132_set_pls_iptmode(I16 axis, I16 pls_iptmode)
U16 _8132_set_cnt_src(I16 axis, I16 cnt_src)

Visual Basic (Windows 95/NT)
B_8132_set_pls_outmode (ByVal axis As Long, ByVal pls_outmode As

Long) As Integer
B_8132_set_pls_iptmode (ByVal axis As Long, ByVal pls_iptmode As Long)

As Integer
B_8132_set_cnt_src (ByVal axis As Long, ByVal cnt_src As Long) As

Integer

@ Argument
axis: axis number designated to configure pulse Input/Output.
pls_outmode : setting of command pulse output mode for OUT and DIR

pins.
 pls_outmode=0, OUT/DIR type pulse output.
 pls_outmode=1, CW/CCW type pulse output.
pls_iptmode : setting of encoder feedback pulse input mode for EA and EB

pins.

84 • Function Library

 pls_iptmode=0, 1X AB phase type pulse input.
 pls_iptmode=1, 2X AB phase type pulse input.
 pls_iptmode=2, 4X AB phase type pulse input.
 pls_iptmode=3, CW/CCW type pulse input.
cnt_src: Counter source
 cnt_src=0, counter source from command pulse
 cnt_src=1, counter source from external input EA, EB

@ Return Code
 ERR_NoError

6.5 Continuously Motion Move
@ Name

_8132_v_move – Accelerate an axis to a constant velocity with
trapezoidal profile

_8132_sv_move – Accelerate an axis to a constant velocity with
S-curve profile

_8132_v_change – Change speed on the fly
_8132_v_stop – Decelerate to stop
_8132_fix_max_speed – Set max speed when using v_change()

function

@ Description
_8132_v_move:

This function is used to accelerate an axis to the specified constant
velocity. The axis will continue to travel at a constant velocity until the
velocity is changed or the axis is commanded to stop. The direction is
determined by the sign of velocity parameter.

_8132_sv_move:
This function is similar to v_stop() but accelerating with S-curve.

_8132_v_change:
You can change the velocity profile of command pulse ouput during
operation by this function. This function changes the maximum
velocity setting during operation. However, if you operate under
“Preset Mode” (like start_a_move(),…), you are not allowed to
change the acceleration parameter during operation because the
deceleration point is pre-determined. But changing the acceleration
parameter when operating under “Constant Velocity Mode” is valid.

_8132_fix_max_speed:
 In order to calculate better performance when using
v_change() function, user must set this function before any PTP
function

_8132_v_stop:
This function is used to decelerate an axis to stop. This function is
also useful when preset move(both trapezoidal and S-curve motion),

Function Library • 85

manual move or home return function is performed.

@ Syntax
C/C++ (DOS, Windows 95/NT)

U16 _8132_v_move(I16 axis, F64 str_vel, F64 max_vel, F64 Tacc)
U16 _8132_sv_move(I16 axis, F64 str_vel, F64 max_vel, F64 Tlacc, F64

Tsacc)
U16 _8132_v_change(I16 axis, F64 max_vel, F64 Tacc)
U16 _8132_fix_max_speed(I16 axis, F64 max_vel)
U16 _8132_v_stop(I16 axis, F64 Tdec)

Visual Basic (Windows 95/NT)
B_8132_v_move (ByVal axis As Integer, ByVal str_vel As Double, ByVal

max_vel As Double, ByVal Tacc As Double) As Integer
B_8132_sv_move(I16 axis, F64 str_vel, F64 max_vel, F64 Tlacc, F64 Tsacc)

As Integer
B_8132_v_change(I16 axis, F64 max_vel, F64 Tacc) As Integer
B_8132_fix_max_speed (ByVal axis As Integer, ByVal max_speed As

Double) As Integer
B_8132_v_stop (ByVal axis As Integer, ByVal Tacc As Double) As Integer

@ Argument
axis: axis number designated to move or stop.
str_vel: starting velocity in unit of pulse per second
max_vel: maximum velocity in unit of pulse per second
max_speed: maximum velocity during a v_change() function
Tacc: specified acceleration time in unit of second
Tdec: specified deceleration time in unit of second

@ Return Code
 ERR_NoError

6.6 Trapezoidal Motion Mode
@ Name

_8132_start_a_move– Begin an absolute trapezoidal profile motion
_8132_start_r_move– Begin a relative trapezoidal profile motion
_8132_start_t_move– Begin a non-symmetrical relative trapezoidal

profile motion
_8132_start_ta_move– Begin a non-symmetrical absolute

trapezoidal profile motion
_8132_a_move– Begin an absolute trapezoidal profile motion and

wait for completion
_8132_r_move– Begin a relative trapezoidal profile motion and wait

for completion
_8132_t_move– Begin a non-symmetrical relative trapezoidal

profile motion and wait for completion

86 • Function Library

_8132_ta_move– Begin a non-symmetrical absolute trapezoidal
profile motion and wait for completion

@ Description
_8132_start_a_move() :

This function causes the axis to accelerate from a starting velocity,
slew at constant velocity, and decelerate to stop at the specified
absolute position, immediately returning control to the program. The
acceleration rate is equal to the deceleration rate. _8132_a_move()
starts an absolute coordinate move and waits for completion.

_8132_start_r_move() :
This function causes the axis to accelerate from a starting velocity,
slew at constant velocity, and decelerate to stop at the relative
distance, immediately returning control to the program. The
acceleration rate is equal to the deceleration rate. _8132_r_move()
starts a relative move and waits for completion.

_8132_start_ta_move() :
This function causes the axis to accelerate from a starting velocity,
slew at constant velocity, and decelerate to stop at the specified
absolute position, immediately returning control to the program..
_8132_ta_move() starts an absolute coordinate move and waits for
completion.

_8132_start_t_move() :
This function causes the axis to accelerate from a starting velocity,
slew at constant velocity, and decelerate to stop at the relative
distance, immediately returning control to the program..
_8132_t_move() starts a relative coordinate move and waits for
completion.

The moving direction is determined by the sign of pos or dist
parameter.If the moving distance is too short to reach the specified
velocity, the controller will accelerate for the first half of the distance
and decelerate for the second half (triangular profile).
wait_for_done() waits for the motion to complete.

@ Syntax
C/C++ (DOS, Windows 95/NT)

U16 _8132_start_a_move(I16 axis, F64 pos, F64 str_vel, F64 max_vel, F64
Tacc)

U16 _8132_a_move(I16 axis, F64 pos, F64 str_vel, F64 max_vel, F64 Tacc)
U16 _8132_start_r_move(I16 axis, F64 distance, F64 str_vel, F64 max_vel,

F64 Tacc)
U16 _8132_r_move(I16 axis, F64 distance, F64 str_vel, F64 max_vel, F64

Tacc)

Function Library • 87

U16 _8132_start_t_move(I16 axis, F64 dist, F64 str_vel, F64 max_vel, F64
Tacc, F64 Tdec)

U16 _8132_t_move(I16 axis, F64 dist, F64 str_vel, F64 max_vel, F64 Tacc,
F64 Tdec)

U16 _8132_start_ta_move(I16 axis, F64 pos, F64 str_vel, F64 max_vel, F64
Tacc, F64 Tdec)

U16 _8132_ta_move(I16 axis, F64 pos, F64 str_vel, F64 max_vel, F64 Tacc,
F64 Tdec)

U16 _8132_wait_for_done(I16 axis)

Visual Basic (Windows 95/NT)
B_8132_start_a_move (ByVal axis As Integer, ByVal pos As Double, ByVal

str_vel As Double, ByVal max_vel As Double, ByVal Tacc l As
Double) As Integer

B_8132_a_move (ByVal axis As Integer, ByVal pos As Double, ByVal
str_vel As Double, ByVal max_vel As Double, ByVal Tacc As Double)
As Integer

B_8132_start_r_move (ByVal axis As Integer, ByVal distance As Double,
ByVal str_vel As Double, ByVal max_vel As Double, ByVal Tacc As
Double) As Integer

B_8132_r_move (ByVal axis As Integer, ByVal distance As Double, ByVal
str_vel As Double, ByVal max_vel As Double, ByVal Tacc As Double)
As Integer

B_8132_start_t_move (ByVal axis As Integer, ByVal distance As Double,
ByVal str_vel As Double, ByVal max_vel As Double, ByVal Tacc As
Double, ByVal Tdec As Double) As Integer

B_8132_t_move (ByVal axis As Integer, ByVal distance As Double, ByVal
str_vel As Double, ByVal max_vel As Double, ByVal Tacc As Double,
ByVal Tdec As Double) As Integer

B_8132_start_ta_move(ByVal axis As Integer, ByVal pos As Double , ByVal
str_vel As Double, ByVal max_vel As Double, ByVal Tacc As Double,
ByVal Tdec As Double) As Interger

B_8132_ta_move(ByVal axis As Integer, ByVal pos As Double , ByVal
str_vel As Double, ByVal max_vel As Double, ByVal Tacc As Double,
ByVal Tdec As Double) As Integer

B_8132_wait_for_done(ByVal axis As Integer) As Integer

@ Argument
axis: axis number designated to move.
pos : specified absolute position to move
distance or dist: specified relative distance to move
str_vel: starting velocity of a velocity profile in unit of pulse per second
max_vel: starting velocity of a velocity profile in unit of pulse per second
Tacc: specified acceleration time in unit of second
Tdec: specified deceleration time in unit of second

@ Return Code
ERR_NoError
ERR_MoveError

88 • Function Library

6.7 S-Curve Profile Motion
@ Name

_8132_start_s_move– Begin a S-Curve profile motion
_8132_s_move– Begin a S-Curve profile motion and wait for

completion
_8132_start_rs_move– Begin a relative S-Curve profile motion
_8132_rs_move– Begin a relative S-Curve profile motion and wait

for completion
_8132_start_tas_move– Begin a non-symmetrical absolute S-curve

profile motion
_8132_tas_move– Begin a non-symmetrical absolute S-curve

profile motion and wait for completion

@ Description
_8132_start_s_move() :

This function causes the axis to accelerate from a starting velocity,
slew at constant velocity, and decelerate to stop at the specified
absolute position, immediately returning control to the program. The
acceleration rate is equal to the deceleration rate. _8132_s_move()
starts an absolute coordinate move and waits for completion.

_8132_start_rs_move() :
This function causes the axis to accelerate from a starting velocity,
slew at constant velocity, and decelerate to stop at the relative
distance, immediately returning control to the program. The
acceleration rate is equal to the deceleration rate. _8132_rs_move()
starts a relative move and waits for completion.

_8132_start_tas_move() :
This function causes the axis to accelerate from a starting velocity,
slew at constant velocity, and decelerate to stop at the specified
absolute position, immediately returning control to the program..
_8132_tas_move() starts an absolute coordinate move and waits for
completion.

@ Syntax
C/C++ (DOS, Windows 95/NT)

U16 _8132_start_s_move(I16 axis, F64 pos, F64 str_vel, F64 max_vel, F64
Tlacc, F64 Tsacc)

U16 _8132_s_move(I16 axis, F64 pos, F64 str_vel, F64 max_vel, F64 Tlacc,
F64 Tsacc)

U16 _8132_start_rs_move(I16 axis, F64 distance, F64 str_vel, F64 max_vel,
F64 Tlacc, F64 Tsacc)

U16 _8132_rs_move(I16 axis, F64 distance, F64 str_vel, F64 max_vel, F64

Function Library • 89

Tlacc, F64 Tsacc)
U16 _8132_start_tas_move(I16 axis, F64 pos, F64 str_vel, F64 max_vel,

F64 Tlacc, F64 Tsacc, F64 Tldec, F64 Tsdec)
U16 _8132_tas_move(I16 axis, F64 pos, F64 str_vel, F64 max_vel, F64

Tlacc, F64 Tsacc, F64 Tldec, F64 Tsdec)

Visual Basic (Windows 95/NT)
B_8132_start_s_move(ByVal axis As Integer, ByVal pos As Double, ByVal

str_vel As Double, ByVal max_vel As Double, ByVal Tlacc As
Double, ByVal Tsacc As Double) As Integer

B_8132_s_move(ByVal axis As Integer, ByVal pos As Double, ByVal str_vel
As Double, ByVal max_vel As Double ByVal Tlacc As Double, ByVal
Tsacc As Double) As Integer

B_8132_start_rs_move(ByVal axis As Integer, ByVal distance As Double,
ByVal str_vel As Double, ByVal max_vel As Double, ByVal Tlacc As
Double, ByVal Tsacc As Double) As Integer

B_8132_rs_move(ByVal axis As Integer, ByVal distance As Double, ByVal
str_vel As Double, ByVal max_vel As Double, ByVal Tlacc As
Double, ByVal Tsacc As Double) As Integer

B_8132_start_tas_move(ByVal axis As Integer, ByVal pos As Double, ByVal
str_vel As Double, ByVal max_vel As Double, ByVal Tlacc As
Double, ByVal Tsacc As Double, ByVal Tldec As Double, ByVal
Tsdec As Double) As Integer

B_8132_tas_move(ByVal axis As Integer, ByVal pos As Double ByVal
str_vel As Double, ByVal max_vel As Double ByVal Tlacc As Double,
ByVal Tsacc As Double, ByVal Tldec As Double, ByVal Tsdec As
Double) As Integer

@ Argument
axis: axis number designated to move.
pos : specified absolute position to move
distance or dist: specified relative distance to move
str_vel: starting velocity of a velocity profile in unit of pulse per second
max_vel: starting velocity of a velocity profile in unit of pulse per second
Tlacc: specified linear acceleration time in unit of second
Tsacc: specified S-curve acceleration time in unit of second
Tldec: specified linear deceleration time in unit of second
Tsdec: specified S-curve deceleration time in unit of second

@ Return Code
ERR_NoError
ERR_MoveError

90 • Function Library

6.8 Multiple Axes Point to Point Motion
@ Name

_8132_start_move_all– Begin a multi-axis trapezoidal profile
motion

_8132_move_all–Begin a multi-axis trapezoidal profile motion and
wait for completion

_8132_wait_for_all–Wait for all axes to finish

@ Description
_8132_start_move_all() :

This function causes the specified axes to accelerate from a starting
velocity, slew at constant velocity, and decelerate to stop at the
specified absolute position, immediately returning control to the
program. The move axes are specified by axes and the number of
axes are defined by n_axes. The acceleration rate of all axes is equal
to the deceleration rate. _8132_move_all() starts the motion and waits
for completion. Both functions guarantee that motion begins on all
axes at the same sample time. Note that it is necessary to make
connections according to Section 3.12 on CN3 if these two functions
are needed.
_8132_wait_for_done() waits for the motion to complete for all of the
specified axes.

The following code demos how to utilize these functions. This code
moves axis 0 and axis 4 to position 8000.0 and 120000.0 respectively.
If we choose velocities and acelerations that are propotional to the
ratio of distances, then the axes will arrive at their endpoints at the
same time (simultaneous motion).

#include “pci_8132.h”

int main()
{
 I16 axes[2] = {0, 4};
 F64
 positions[2] = {8000.0, 12000.0},
 str_vel[2]={0.0, 0.0},
 max_vel[2]={4000.0, 6000.0},
 Tacc[2]]={0.04, 0.06};

_8132_move_all(2, axes, positions, str_vel, max_vel, Tacc);

return ErrNoError;
}

Function Library • 91

@ Syntax
C/C++ (DOS, Windows 95/NT)

U16 _8132_start_move_all(I16 len, I16 *axes, F64 *pos, F64 *str_vel, F64
*max_vel, F64 *Tacc)

U16 _8132_move_all(I16 len, I16 *axes, F64 *pos, F64 *str_vel, F64
*max_vel, F64 *Tacc)

U16 _8132_wait_for_all(I16 len, I16 *axes)

Visual Basic (Windows 95/NT)
B_8132_start_move_all(ByVal len As Integer, ByRef axis As Integer , ByRef

pos As Double, ByRef str_vel As Double, ByRef max_vel As Double,
ByRef Tacc As Double) As Integer

B_8132_move_all(ByVal len As Integer, ByRef axis As Integer, ByRef pos
As Double, ByRef str_vel As Double, ByRef max_vel As Double,
ByRef Tacc As Double) As Integer

B_8132_wait_for_all(ByVal n_axes As Integer, ByRef axis As Integer) As
Integer

@ Argument
n_axes: number of axes for simultaneous motion
*axes: specified axes number array designated to move.
*pos : specified position array in unit of pulse
*str_vel: starting velocity array in unit of pulse per second
*max_vel: maximum velocity array in unit of pulse per second
*Tacc: acceleration time array in unit of second

@ Return Code
ERR_NoError
ERR_MoveError

92 • Function Library

6.9 Linear and Circular Interpolated Motion
@ Name

_8132_start_move_xy – Perform a 2-axes linear interpolated motion
between X & Y without waiting

_8132_move_xy – Perform a 2-axes linear interpolated motion
between X & Y and wait for completion

_8132_arc_xy – Perform a 2-axes circular interpolated motion
between X & Y

 and wait for completion
_8132_arc_xy – Perform a 2-axes circular interpolated motion

between Z & U and wait for completion
_8132_recover_xy – return single axis motion mode

@ Description
_8132_move_xy, _8132_start_move_xy:

These two functions cause a linear interpolation motion between two
axes and wait for completion. The moving speed should be set before
performing these functions. Relations of speed between two axes are
given in Chapter 4.1.4.

_8132_arc_xy:
These two functions cause the axes to move along a circular arc and
wait for completion. The arc starts from origin and continues through
the specified angle. A positive value for angle produces clockwise
arcs and a negative value produces counter-clockwise arcs. The
center of the arc is specified by the parameters x_center and y_center.
_8132_set_arc_division() function specifies the maximum angle(in
degrees) between successive points along the arc. The default angle
is 5 degrees. The moving speed should be set before performing
these functions.

_8132_recover_xy:
 After using _start_move_xy, use must use this function for next
single PTP axis motion

@ Syntax
C/C++ (DOS, Windows 95/NT)

U16 _8132_move_xy(I16 cardNo, F64 x, F64 y)
U16 _8132_start_move_xy(I16 cardNo, F64 x, F64 y)
U16 _8132_arc_xy(I16 cardNo, F64 x_center, F64 y_center, F64 angle)
U16 _8132_recover_xy(int cardNo)

Visual Basic (Windows 95/NT)
B_8132_move_xy (ByVal cardno As Long, ByVal x As Double, ByVal y As

Double) As Integer
B_8132_start_move_xy (ByVal cardno As Long, ByVal x As Double, ByVal y

As Double) As Integer

Function Library • 93

B_8132_arc_xy (ByVal cardno As Long, ByVal x_center As Double, ByVal
y_center As Double, ByVal angle As Double) As Integer

B_8132_recover_xy (ByVal cardno As Long) As Integer

@ Argument
cardNo: card number designated to perform interpolating function.
x, y: absolute target position of linear interpolation motion
x_center, y_center: center position of an arc
angle : specified angle for an arc

@ Return Code
 ERR_NoError

6.10 Interpolation Parameters Configuring
@ Name

_8132_map_axes – Configure the axis map for coordinated motion
_8132_set_move_speed – Set the vector velocity
_8132_set_move_accel – Set the vector linear acceleration time
_8132_set_move_saccel – Set the vector s-curve acceleration time
_8132_set_arc_division – Set the interpolation arc segment length
_8132_arc_optimization – Enable/Disable optimum acceleration

calculations for arcs
_8132_set_move_ratios – Set the axis resolution ratios

@ Description
map_axes:

This function initializes a group of axes for coordinated motion.
map_axes() must be called before any coordinated motion function is
used. For PCI-8132, coordinated motion is made only between two
axes. For example, if the z and u coordinates correspond to axes 2
and 3, the following code would be used to define the coordinate
system:

 int ax[2] = {2, 3};
 map_axes(2, ax);
 set_move_speed(10000.0); // Set vector velocity = 10000pps
 set_move_accel(0.1); // Set vector accel. time = 0.1 sec

set_move_speed, set_move_accel,set_move_saccel:
The vector velocity and vector acceleration can be specified for
coordinated motion by this three functions. Codes at last samples
demonstrates how to utilize this three functions associated with
map_axes().

94 • Function Library

set_arc_division:
This function specifies the maximum angle (in degrees) between
successive points along the arc. The default is 5 degrees.

arc_optimization:
This function enables (optimize = TRUE) or disable (optimize =
FALSE) the automatic calculation of the optimum acceleration for an
arc. The default state for arc optimization is enabled. When
arc_optimization() is enabled, circular intepolation is greatly
improved by choosing the best acceleration for the motion. The
optimum acceleration is given by the following formula:

 Aopt = V2/d;

where Aopt , is the best acceleration, V is the set_move_speed()
velocity, d is the segment length. If the acceleration is higher than Aopt ,
the linear portions may be noticeable. If the acceleration is lower than
Aopt , the motion will be slowed during the arc and it will lose its
roundness. Both arc_xy() and arc_zu() automatically change the
acceleration to Aopt during the circular interpolated move.

set_move_ratio:
This function configures scale factors for the specified axis. Usually,
the axes only need scale factors if their mechanical resolutions are
different. For example, if the resolution of feedback sensors is two
times resolution of command pulse, then ratio = 2.

@ Syntax
C/C++ (DOS, Windows 95/NT)

U16 _8132_map_axes(U16 n_axes, U16 *map_array)
U16 _8132_set_move_speed(F64 str_vel, F64 max_vel)
U16 _8132_set_move_accel(F64 Tacc)
U16 _8132_set_move_saccel(double tlacc, double tsacc)
U16 _8132_set_arc_division(F64 degrees)
U16 _8132_arc_optimization(U16 optimize)
U16 _8132_set_move_ratio(U16 axis, F64 ratio)

Visual Basic (Windows 95/NT)
B_8132_map_axes (ByVal n_axes As Integer, map_array As Integer) As

Integer
B_8132_set_move_speed (ByVal str_vel As Double, ByVal max_vel As

Double) As Integer
B_8132_set_move_accel (ByVal accel As Double) As Integer
B_8132_set_move_saccel(ByVal Tlacc As Double, ByVal Tsacc As Double)

As Integer
B_8132_set_arc_division (ByVal axis As Integer, ByVal degrees As Double)

As Integer
B_8132_arc_optimization (ByVal optimize As Long) As Integer
B_8132_set_move_ratio (ByVal axis As Integer, ByVal ratio As Double) As

Function Library • 95

Integer

@ Argument
axis: axis number designated to configure
n_axes: number of axes for coordinated motion
*map_array: specified axes number array designated to move.
str_vel: starting velocity in unit of pulse per second
max_vel: maximum velocity in unit of pulse per second
Tacc: specified acceleration time in unit of second
Tlacc: specified linear acceleration section of s-curve in second
Tsacc: specified curve acceleration section of s-curve in second

degrees: maximum angle between successive points along the arc.
ratio: ratio of (feedback resolution)/(command resolution)

@ Return Code
 ERR_NoError

6.11 Home Return
@ Name

_8132_set_home_config – Set the configuration for home return.
_8132_home_move – Perform a home return move.

@ Description
_8132_set_home_config:

Configure the logic of origin switch and index signal needed for
home_move() function. If you need to stop the axis after EZ signal is
active(home_mode=1 or 2), you should keep placing ORG signal in the
ON status until the axis stop. If the pulse width of ORG signal is too short
to keep it at ON status till EZ goes ON, you should select the org_latch as
enable. The latched condition is cancelled by the next start or by disabling
the org_latch. Three home return modes are available. Refer to
Chapter4.1.5 for the setting of home_mode control.

_8132_home_move:
This function will cause the axis to perform a home return move according
to the setting of set_home_config() function. The direction of moving is
determined by the sign of velocity parameter(svel, mvel). Since the
stopping condition of this function is determined by home_mode setting,
user should take care to select the initial moving direction. Or user should
take care to handle the condition when limit switch is touched or other
conditions that is possible causing the axis to stop. Executing v_stop()
function during home_move() can also cause the axis to stop.

96 • Function Library

@ Syntax
C/C++ (DOS, Windows 95/NT)

U16 _8132_set_home_config(I16 axis, I16 home_mode, I16 org_logic, I16
org_latch, I16 EZ_logic)

U16 _8132_home_move(I16 axis, F64 svel, F64 mvel, F64 accel)

Visual Basic (Windows 95/NT)
B_8132_set_home_config (ByVal axis As Long, ByVal home_mode As Long,

ByVal org_logic As Long, ByVal org_latch As Long, ByVal EZ_logic
As Long) As Integer

B_8132_home_move (ByVal axis As Long, ByVal str_vel As Double, ByVal
max_vel As Double, ByVal accel As Double) As Integer

@ Argument
axis: axis number designated to configure and perform home returning
home_mode : stopping modes for home return.
 home_mode=0, ORG active only.
 home_mode=1, ORG active and then EZ active to stop,

high speed all the way.
 home_mode=2, ORG active and then EZ active to stop,

high speed till ORG active then low speed till EZ active.
org_logic: Action logic configuration for ORG signal
 org_logic=0, active low; org_logic=1, active high
org_latch: Latch state control for ORG signal
 org_latch=0, don’t latch input; org_latch=1, latch input.
EZ_logic: Action logic configuration for EZ signal
 EZ_logic=0, active low; EZ_logic=1, active high.

@ Return Code
 ERR_NoError

6.12 Manual Pulser Motion
@ Name

_8132_set_manu_iptmode – Set pulser input mode and operation
mode

_8132_manu_move – Begin a manual pulser movement
_8132_set_manu_axis – Select manual pulser axis

@ Description
_8132_set_manu_iptmode:

Four types of pulse input modes can be available for pulser or hand
wheel. User can also move two axes simultaneously with one pulser
by selecting the operation mode to common mode. Or move the
axes independently by selecting the operation mode to independent
mode.

_8132_manu_move:

Function Library • 97

Begin to move the axis according to manual pulser input as this
command is written. The maximum moving velocity is limited by mvel
parameter. Not until the v_stop() command is written won’t system
end the manual move mode.

_8132_set_manu_axis:
Choose the control axis for manual pulser. User can set which axis will
move by manual pulser or stop the manual pulser output.

@ Syntax
C/C++ (DOS, Windows 95/NT)

U16 _8132_set_manu_iptmode(I16 axis, I16 ipt_mode, I16 op_mode)
U16 _8132_manu_move(I16 axis, F64 mvel)
U16 _8132_set_manu_axis(I16 cardno, I16 manu_axis)

Visual Basic (Windows 95/NT)
B_8132_set_manu_iptmode (ByVal axis As Long, ByVal manu_iptmode As

Long, ByVal op_mode As Long) As Integer
B_8132_manu_move (ByVal axis As Long, ByVal max_vel As Double) As

Integer
B_8132_set_manu_axis (ByVal cardno as integer , byVal manu_axis as

integer) As Integer

@ Argument
axis: axis number designated to start manual move
ipt_mode : setting of manual pulser input mode from PA and PB pins
 ipt_mode=0, 1X AB phase type pulse input.
 ipt_mode=1, 2X AB phase type pulse input.
 ipt_mode=2, 4X AB phase type pulse input.
 ipt_mode=3, CW/CCW type pulse input.
op_mode : common or independent mode selection
 op_mode=0, Independent for each axis
 op_mode=1,PAX, PBX common for PAY, PBY
 or PAZ, PBZ common for PAU, PBU.
mvel: limitation for maximum velocity
manu_axis : select manual pulser output axis:
 manu_axis=0, no axis output from manual pulser
 manu_axis=1, axis0 as manual pulser output
 manu_axis=2, axis1 as manual pulser output
 manu_Axis=3, both axis0 and axis1 as manual pulser

output

@ Example
_8132_set_manu_iptmode(0,2,0); // set 4X AB Phase signal
_8132_set_manu_Axis(0,0); // user axis 0 as output
_8132_manu_move(0,10000); // active pulser
.
.
.

98 • Function Library

_8132_v_stop(0,0.1); // stop pulser move

@ Return Code
 ERR_NoError

6.13 Motion Status
@ Name

_8132_motion_done – Return the status when a motion is done

@ Description
_8132_motion_done:

Return the motion status of PCI-8132. position.
Definition of return value is as following:
 Return value =
 0 : the axis is busying.
 1: a movement is finished
 2: the axis stops at positive limit switch
 3: the axis stops at negative limit switch
 4: the axis stops at origin switch
 5: the axis stops because the ALARM signal is active
The following code demonstrates how to utilize this function:

_8132_start_a_move(axis_x, pos1, svel, mvel, Tacc);
// Begin a trapezoidal velocity profile motion
while(!motion_done(axis_x))// Wait for completion of
 {

 // start_a_move()
 if(kbhit())
 {

 // Keyboard hit to escape the
 getch();

 // WHILE loop
 exit(1);
 }
}

@ Syntax
C/C++ (DOS, Windows 95/NT)

U16 _8132_motion_done(I16 axis)
Visual Basic (Windows 95/NT)

B_8132_motion_done (ByVal axis As Integer) As Integer

Function Library • 99

@ Argument
axis: axis number of motion status

@ Return Code
 ERR_NoError

6.14 Servo Drive Interface
@ Name

_8132_set_alm_logic – Set alarm logic and alarm mode
_8132_set_inp_logic – Set In-Position logic and enable/disable
_8132_set_sd_logic – Set slow down point logic and enable/disable
_8132_set_erc_enable – Set ERC pin output enable/disable
_8132_set_sd_stop_mode – Set slow down mode

@ Description
_8132_set_alm_logic:

Set the active logic of ALARM signal input from servo driver. Two
reacting modes are available when ALARM signal is active.

_8132_set_inp_logic:
Set the active logic of In-Position signal input from servo driver.
Users can select whether they want to enable this function. Default
state is disabled.

_8132_set_sd_logic:
Set the active logic and latch control of SD signal input from
mechanical system. Users can select whether they want to enable
this function. Default state is disabled.

_8132_set_erc_enable:
You can set ERC pin output enable/disable by this function. Default
state is enabled.

_8132_set_sd_stop_mode:
There are two types in slow down action. One is slow down to starting
velocity. The other is slow down to stop.

@ Syntax
C/C++ (DOS, Windows 95/NT)

U16 _8132_set_alm_logic(I16 axis, I16 alm_logic, I16 alm_mode)
U16 _8132_set_inp_logic(I16 axis, I16 inp_logic, I16 inp_enable)
U16 _8132_set_sd_logic(I16 axis, I16 sd_logic, I16 sd_latch, I16 sd_enable)
U16 _8132_set_erc_enable(I16 axis, I16 erc_enable)
U16 _8132_set_sd_stop_mode(I16 axis, I16 sd_mode)

Visual Basic (Windows 95/NT)
B_8132_set_alm_logic (ByVal axis As Long, ByVal alm_logic As Long,

ByVal alm_mode As Long) As Integer

100 • Function Library

B_8132_set_inp_logic (ByVal axis As Long, ByVal inp_logic As Long,
ByVal inp_enable As Long) As Integer

B_8132_set_sd_logic (ByVal axis As Long, ByVal sd_logic As Long, ,
ByVal sd_latch As Long, ByVal sd_enable As Long) As Integer

B_8132_set_erc_enable(ByVal axis As Integer, ByVal erc_enable As Long)
As Integer

B_8132_set_sd_stop_mode(ByVal axis As Integer, ByVal sd_mode As
Integer) As Integer

@ Argument
axis: axis number designated to configure
alm_logic: setting of active logic for ALARM signal
 alm_logic=0, active LOW.
 alm_logic=1, active HIGH.
inp_logic: setting of active logic for INP signal
 inp_logic=0, active LOW.
 inp_logic=1, active HIGH.
sd_logic: setting of active logic for SD signal
 sd_logic=0, active LOW.
 sd_logic=1, active HIGH.
sd_latch: setting of latch control for SD signal
 sd_logic=0, do not latch.
 sd_logic=1, latch.
alm_mode : reacting modes when receiving ALARM signal.
 alm_mode=0, motor immediately stops.
 alm_mode=1, motor decelerates then stops.
inp_enable : INP function enable/disable
 inp_enable=0, Disabled
 inp_enable=1, Enabled
sd_enable : Slow down point function enable/disable
 sd_enable=0, Disabled
 sd_enable=1, Enabled
erc_enable : ERC pin output enable/disable
 erc_enable=0, Disabled
 erc_enable=1, Enabled
sd_mode: sd_move=0, slow down to starting velocity
 sd_mode=1, slow down to stop

@ Return Code
 ERR_NoError

Function Library • 101

6.15 I/O Control and Monitoring
@ Name

_8132_Set_SVON – Set state of general purpose output pin
_8132_get_io_status – Get all the I/O status of PCI-8132

@ Description
_8132_Set_SVON:

Set the High/Low output state of general purpose output pin SVON.
_8132_get_io_status:

Get all the I/O status for each axis. The definition for each bit is as
following:

Bit Name Description
0 +EL Positive Limit Switch
1 -EL Negative Limit Switch
2 +SD Positive Slow Down Point
3 -SD Negative Slow Down Point
4 ORG Origin Switch
5 EZ Index signal
6 ALM Alarm Signal
7 SVON SVON of PCL5023 pin output
8 RDY RDY pin input
9 INT Interrupt status
10 ERC ERC pin output
11 INP In-Position signal input

@ Syntax
C/C++ (DOS)

U16 _8132_Set_SVON(I16 axis, I16 on_off)
U16 _8132_get_io_status(I16 axis, U16 *io_status)

C/C++ (Windows 95/NT)
U16 _8132_Set_SVON(I16 axis, I16 on_off)
U16 _8132_get_io_status(I16 axis, U16 *io_status)

Visual Basic (Windows 95/NT)
B_8132_Set_SVON (ByVal axis As Long, ByVal on_off As Long) As

Integer
B_8132_get_io_status (ByVal axis As Integer, io_sts As Integer) As

Integer

@ Argument
axis: axis number for I/O control and monitoring
on_off: setting for SVON pin digital output
 on_off=0, SVON is LOW.

102 • Function Library

 on_off=1, SVON is HIGH.
*io_status : I/O status word. Where “1’ is ON and “0” is OFF. ON/OFF state

is read based on the corresponding set logic.

@ Return Code
 ERR_NoError

6.16 Position Control
@ Name

_8132_set_position – Set the actual position.
_8132_get_position – Get the actual position.
_8132_set_command – Set the current command position.
_8132_get_position – Get the current command position.

@ Description
_8132_set_position()

changes the current actual position to the specified position.
_8132_get_position()

reads the current actual position. Note that when feedback signals is
not available in the system, thus external encoder feedback is
Disabled in set_cnt_src() function, the value gotten from this function
is command position.

_8132_set_command()
changes the command position to the specified command position.

_8132_get_command()
reads the current command position.

@ Syntax
C/C++ (DOS, Windows 95/NT)

U16 _8132_set_position(I16 axis, F64 pos)
U16 _8132_get_position(I16 axis, F64 *pos)
U16 _8132_set_command(I16 axis, F64 pos)
U16 _8132_get_command(I16 axis, F64 *pos)

Visual Basic (Windows 95/NT)
B_8132_get_position (ByVal axis As Integer, pos As Double) As Integer
B_8132_set_position (ByVal axis As Integer, ByVal pos As Double) As

Integer
B_8132_get_command (ByVal axis As Integer, pos As Double) As Integer
B_8132_set_command (ByVal axis As Integer, ByVal pos As Double) As

Integer

@ Argument
axis: axis number designated to set and get position.
pos : actual position or command position

Function Library • 103

@ Return Code
 ERR_NoError

6.17 Interrupt Control
@ Name

_8132_Set_INT_ENABLE – Set interrupt enable
_8132_INT_Enable – Set interrupt enable
_8132_INT_Disable – Set interrupt disable
_8132_Set_INT_Control – Set interrupt event handle
_8132_set_int_factor – Set interrupt generating factors
_8132_get_int_axis – Get the axis which generates interrupt
_8132_get_int_status – Get the interrupting status of axis

@ Description
_8132_Set_INT_ENABLE:

This function is used to enable interrupt generating to host PC. .(This
function just support DOS only.)

_8132_INT_Enable:
This function is used to enable interrupt generating to host PC.(This
function just support Window 95 and Window NT only.)

_8132_INT_Disable:
This function is used to disable interrupt generating to host PC.(This
function just support Window 95 and Window NT only.)

_8132_Set_INT_Control :
This function is used to assign the window INT event.(This function
just support Window 95 and Window NT only.)

_8132_set_int_factor:
This function allows users to select factors to initiate the INT signal.
PCI-8132 can generate INT signal to host PC by setting the relative
bit as 1. The definition for each bit is as following:

Bit Interrupt Factor
0 Stop with the EL signal
1 Stop with the SD signal
2 Stop with the ALM signal
3 Stop with the STP signal
4 Should be set to 0
5 Completion of home return
6 Completion of preset movement

7 Completion of interpolating motion for two axes:
(X & Y) or (Z & U)

8~12 X(should be set to 0)
13 when v_stop() function stop the axis

104 • Function Library

14 EA/EB, PA/PB encoder input error
15 start with STA signal
16 Completion of acceleration
17 Start of deceleration

18~22 Should be Set to 0
23 RDY active (AP3 of PCL5023 change from 1 to 0)

24~31 Should be set to 0
Note: Bit 14: The interrupt is generated when pins EA and EB, or PA
and PB change simultaneously. It means there has an encoder input
error.

get_int_axis:
This function allows user to identify which axis generates the INT
signal to host PC. (This function is for DOS only)

get_int_status:
This function allows user to identify what kinds of interrupt is
generated.
After user gets this value, the status register will be cleared to 0. The
return value is a 32 bits unsigned integer and the definition for each
bit is as following:

Bit Interrupt Type
0 Stop with the +EL signal
1 Stop with the –EL signal
2 Stop with the +SD signal
3 Stop with the –SD signal
4 Stop with the ALM signal
5 Stop with the STP signal
6 Comparator Active
7 Always 0
8 Stop with v_stop() command
9 Stop with home return completed
10 Always 0
11 Stop with preset movement completed
12 Stop with EA/EB input error
13 Always 0
14 Stop with PA/PB input error
15 Start with STA signal
16 Acceleration Completed
17 Deceleration Started

18~22 Always 0
23 RDY active(AP3 of PCL5023 change from 1 to 0)

24~31 Always 0

Function Library • 105

@ Syntax
C/C++ (DOS)

U16 _8132_Set_INT_ENABLE(U16 cardNo, U16 intFlag)
U16 _8132_set_int_factor(U16 axis, U32 int_factor)
U16 _8132_get_int_axis(U16 *int_axis)
U16 _8132_get_int_status(U16 axis, U32 *int_status)

C/C++ (Windows 95/NT)
U16 _8132_INT_Enable (I16 cardNo, HANDLE *phEvent)
U16 _8132_INT_Disable (I16 cardNo)
U16 _8132_Set_INT_Control(U16 cardNo, U16 intFlag)
U16 _8132_set_int_factor(U16 axis, U32 int_factor)
U16 _8132_get_int_status(I16 axis, U32 *int_status)

Visual Basic (Windows 95/NT)
_8132_INT_Enable (ByVal cardNo As Long, phEvent As Long)
_8132_INT_Disable (ByVal cardNo As Long) As Integer
_8132_Set_INT_Control (ByVal cardno As Integer, ByVal intFlag As

Integer)
_8132_set_int_factor (ByVal axis As Integer, ByVal int_factor As Long) As

Integer
_8132_get_int_status (ByVal axis As Long, int_status As Long) As Integer

@ Argument
cardNo: card number 0,1,2,3…
axis: axis number 0,1,2,3,4…
intFlag: int flag, 0 or 1
phEvent: event or event array for interrupt axis (Windows)
int_factor: interrupt factor, refer to previous interrupt factor table
int_axis : interrupt axis number (the return value)
int_status : interrupt factor (the return value), refer to previous interrupt type

table

@ Return Code
 ERR_NoError

106 • Function Library

6.18 Digital Input/Output Control
@ Name

_8132_DO – Set output value
_8132_DI – Get input value

@ Description
_8132_DO:

Set a 16-bits value to PCI-8132’s digital output channels. Each bit of
this value represents a high/low value for one channel.

_8132_DI:
Get a 16-bits value from PCI-8132’s digital input channels. Each bit of
this value represents a high/low value for one channel.

@ Syntax
C/C++ (DOS)

U16 _8132_DO(U16 axis, U16 DoData)
U16 _8132_DI(U16 axis, U16 *DiData)

C/C++ (Windows 95/NT)
U16 _8132_DO(U16 axis, U16 DoData)
U16 _8132_DI(U16 axis, U16 *DiData)

Visual Basic (Windows 95/NT)
B_8132_DO(ByVal axis As Integer, ByVal DoData As Long) As Integer
B_8132_DI(ByVal axis As Long, DiData As Long) As Integer

@ Argumen
axis: axis number 0,1,2,3,4…
DoData: a 16-bits output value
DiData: a 16-bits input value

@ Return Code
ERR_NoError

Function Library • 107

6.19 Position Compare Control
@ Name

_8132_Get_CompCnt – Get counter value from comparator
_8132_Set_CompCnt – Set counter value in comparator
_8132_Set_CompMode – Set compare mode
_8132_Set_CompData – Set comparator value
_8132_Get_CompData – Get current comparator value
_8132_Set_CompInt – Enable comparator Interrupt
_8132_Set_CompHome – Set comparator origin
_8132_Get_CompSts – Get comparator status
_8132_Build_Comp_Table – Build compare table
_8132_Set_Comp_Table – Enable/Disable compare table
_8132_Build_Comp_Function – Build a linear compare table by a

function

@ Description
_8132_Get_CompCnt /_8132_Set_CompCnt:

Read or write the counter value in FPGA comparator on PCI-8132.
_8132_Set_CompData / _8132_Get_CompData:

Read or write the current value for position compare
 _8132_Set_CompMode:

Set position compare rule for one axis. User can choose the compare
direction from this function

_8132_Set_CompInt:
Enable/disable the comparator interrupt. If user uses a compare table
for “on the fly compare”, the comparator interrupt must be enabled.
Interrupt will trigger kernel driver to load next compare point and send
a Windows Event to notify user’s AP. If the frequency of comparator
output is too high, the Windows Event won’t be received by AP without
lost but the hardware trigger will be send correctly without delay.

_8132_Set_CompHome:
Reset the comparator’s counter to zero. This function usually follows
by home_move() to make sure that two counter are the same before
any motion.

_8132_Get_CompSts:
Get current status of comparator

_8132_Build_Comp_Table:
PCI-8132 provides a convenient interface for user to input their
compare points. User can pass an array pointer to this function to
notify PCI-8132. The maximum points of this table are 1024 long
integer value.

_8132_Set_Comp_Table:
Once user builds a compare table by _8132_Build_Comp_Table(), he

108 • Function Library

can use this function to control the table active or not.
_8132_Set_Comp_Function:

This is an alternative way to set up compare data if user’s compare
points are equal interval. It is no size limit if user uses this method.

@ Syntax
C/C++ (DOS)

U16 _8132_Get_CompCnt(U16 axis, double *act_pos);
U16 _8132_Set_CompCnt(U16 axis, double cnt_value);
U16 _8132_Set_CompMode(U16 axis, I16 comp_mode);
U16 _8132_Set_CompData(U16 axis, double comp_data);
U16 _8132_Get_CompData(U16 axis, double *comp_data);
U16 _8132_Set_CompInt(U16 axis, U16 enable);
U16 _8132_Set_CompHome(U16 axis);
U16 _8132_Get_CompSts(U16 cardNo, U16 *Comp_Sts);
U16 _8132_Build_Comp_Table(U16 axis, I32 *table, I16 Size);
U16 _8132_Set_Comp_Table(U16 axis, U16 Control);
U16 _8132_Build_Comp_Function(U16 axis,I32 Start,I32 End,I32 Interval);

C/C++ (Windows 95/NT)
U16 PASCAL _8132_Get_CompCnt(U16 axis, double *act_pos);
U16 PASCAL _8132_Set_CompCnt(U16 axis, double cnt_value);
U16 PASCAL _8132_Set_CompMode(U16 axis, I16 comp_mode);
U16 PASCAL _8132_Set_CompData(U16 axis, double comp_data);
U16 PASCAL _8132_Get_CompData(U16 axis, double *comp_data);
U16 PASCAL _8132_Set_CompInt(U16 axis, U16 enable);
U16 PASCAL _8132_Set_CompHome(U16 axis);
U16 PASCAL _8132_Get_CompSts(U16 cardNo, U16 *Comp_Sts);
U16 PASCAL _8132_Build_Comp_Table(U16 axis, I32 *table, I16 Size);
U16 PASCAL _8132_Set_Comp_Table(U16 axis, U16 Control);
U16 PASCAL _8132_Build_Comp_Function(U16 axis,I32 Start,I32

End,I32 Interval);

Visual Basic (Windows 95/NT)
B_8132_Set_CompInt(ByVal axis As Integer, ByVal enable As Integer) As

Integer
B_8132_Get_CompData ByVal axis As Integer, comp_data As Double) As

Integer
B_8132_Set_CompData (ByVal axis As Integer, ByVal comp_data As

Double) As Integer
B_8132_Set_CompMode (ByVal axis As Integer, ByVal comp_mode As

Integer) As Integer
B_8132_Set_CompCnt (ByVal axis As Integer, ByVal cnt_value As Double)

As Integer
B_8132_Get_CompCnt (ByVal axis As Integer, act_pos As Double) As

Integer
B_8132_Set_CompHome (ByVal axis As Integer) As Integer
B_8132_Build_Comp_Table (ByVal axis As Integer, table As Long, ByVal

Function Library • 109

Size As Integer) As Integer
B_8132_Set_Comp_Table (ByVal axis As Integer, ByVal Control As Integer)

As Integer
B_8132_Build_Comp_Table(ByVal axis As Integer, ByVal Start As Long,

ByVal End As Long, ByVal Interval As Long) AS Integer

@ Argumen
axis: axis number 0,1,2,3,4…
enable : 1 means enable, 0 means disable
comp_data: comparator value
cnt_value : counter value
comp_mode : comparator mode

0=increasing (counter > compare value)
1=equal (counter = compare value)
2=decreasing (counter < compare value)

*table: compare table pointer
size: compare table size
control: 0 means disable
 1 means compare points is from compare table
 2 means compare points is from linear function
comp_sts: the definition are as follows:

bit0: CMP1 Out Status , Low=0 and high=1
bit1: CMP2 Out Status , Low=0 and high=1
bit2~bit6 not use
bit7: Interrupt happened=1, not happened=0

start: compare function start point
end: compare function end point
interval: compare function incremental size

@ Return Code
ERR_NoError

110 • Connection Example

7

Connection Example

This chapter shows some connection examples between PCI-8132 and
servo drivers and stepping drivers.

7.1 General Description of Wiring
Figure 7.1 is a general description of all the connectors of PCI-8132. Only
connection of one of 2 axes is shown.

CN1: Receives +24V power from external power supply.
CN2 :Main connection between PCI-8132 and pulse input servo

driver or stepping driver.
CN3: Connector for simultaneously start or stop multiple PCI-8132

cards.

Figure 7.2 shows how to integrate PCI-8132 with a physical system.

Connection Example • 111

Figure 7.1 General Description of Wiring

Description of PCI-8132 Indexer Pinouts

To other
PCI_8132 Cards

From external
Power Supply

To Axis
1 ~ 2

PCI_8132
Terminal Block

3

4

5

6

98

99

7

8

9

10

13

14

15

16

17

18

20

37

38

39

40

41

OUT1 +

OUT1 -

DIR +

DIR -

EX GND

EX +24V

SVON 1

ERC 1

ALM 1

INP 1

EA1 +

EA1 -

EB1 +

EB1 -

EZ1 +

EZ1 -

EX GND

PEL1

MEL1

PSD1

MSD1

ORG1

RDY 1

EX GND

11

12

EX +5V19

CN 2
AXIS

CN 3
START

CN 1
POWER

24 V
GND

STP
STA
STP
STA

1

2

3

4

Machine
DI / DO

Pulse
Output

Pulse
Input

Machine
DI / DO

Pulse
Output

Pulse
Input

Driver
DI / DO

Machine
DI / DO

Pulse
Output

Pulse
Input

Driver
DI / DO

Machine
DI / DO

Pulse
Output

Pulse
Input

Driver
DI / DO

Driver
DI / DO

Only Axis 1
is indicated.

112 • Connection Example

 Figure 7.2 System Integration with PCI-8132

 Wiring of PCI-8132 with Servo Driver

3
4
5
6
98
99
7
8
9
10

13
14
15
16
17
18

20
37
38
39
40
41

OUT1 +
OUT1 -
DIR +
DIR -

EX GND
EX +24V
SVON 1
ERC 1
ALM 1
INP 1

EA1 +
EA1 -
EB1 +
EB1 -
EZ1 +
EZ1 -

EX GND
PEL1
MEL1
PSD1
MSD1
ORG1

RDY 1
EX GND

11
12

EX +5V19

CN 2
AXIS

CN 1
POWER

24 V
GND

1
Machine
DI / DO

Pulse
Output

Pulse
Input

Driver
DI / DO

2

3

4

Motion
Creator 8132.dll

Win95/Win98/WinNT

ME

Linear Encoder with EA/EB/EZ Output

Driver with
Pulse Input

1

2

3

A

B

1

2

3

A

B

PCI_8132 to Driver

Encoder to PCI_8132

PCI_8132 to Machine I/O

Rotary Encoder

Linear Encoder

Connection Example • 113

7.2 Connection Example with Servo Driver
In this section, we use Panasonic Servo Driver as an example to show
how to connect it with PCI-8132. Figure 7.3 show the wiring.
Note that:

1. For convenience’ sake , the drawing shows connections for one axis
only.

2. Default pulse output mode is OUT/DIR mode; default input mode is
4X AB phase mode. Anyway, user can set to other mode by
software function.

3. Since most general purpose servomotor driver can operates in
Torque Mode; Velocity Mode; Position mode. For linking with
PCI-8132, user should set the operating mode to Position Mode. By
setting servo driver to this mode, user can use PCI-8132 to perform
either Position Control or Velocity Control.

4. The Deviation Counter Clear input for Panasonic Driver is line drive
type where ERC output of PCI-8132 is open collector type. So a little
circuit is required for interfacing.

Figure 7.4 Interface circuit between ERC and (CL+, CL-)

EX+5V

26LS32

Inside PCI-8132 Inside Panasonic Driver

CL+

390

2.2K

2.2K

CL-

ERC

EXGND

114 • Connection Example

Figure 7.3 Connection of PCI-8132 with Panasonic Driver

Wiring of PCI-8132 with Panasonic MSD

3
4
5
6
98
99
7
8
9
10

13
14
15
16
17
18

20
37
38
39
40
41

OUT1 +
OUT1 -
DIR +
DIR -

EX GND
EX +24V
SVON 1
ERC 1
ALM 1
INP 1

EA1 +
EA1 -
EB1 +
EB1 -
EZ1 +
EZ1 -

EX GND
PEL1
MEL1
PSD1
MSD1
ORG1

RDY 1
EX GND

11
12

EX +5V19

PCI_8132 Axis 1 Servo Driver

Panasonic
MSC CNI/F
(50-200 W)

Table

MEL ORG MSD PSD PEL

E

M

6
5
8
7

PULS +
PULS -
SIGN +
SIGN -

28
11
12

COM -
COM +

SRV-ON

26
25

ALM
COIN

27SRDY
3
19

GND
OA +

20OA -
21
22

OB +
OB -

1OZ +
2OZ -

13CL

Connection Example • 115

Product Warranty/Service

Seller warrants that equipment furnished will be free form defects in
material and workmanship for a period of one year from the confirmed
date of purchase of the original buyer and that upon written notice of any
such defect, Seller will, at its option, repair or replace the defective item
under the terms of this warranty, subject to the provisions and specific
exclusions listed herein.
This warranty shall not apply to equipment that has been previously
repaired or altered outside our plant in any way as to, in the judgment of
the manufacturer, affect its reliability. Nor will it apply if the equipment has
been used in a manner exceeding its specifications or if the serial number
has been removed.
Seller does not assume any liability for consequential damages as a result
from our products uses, and in any event our liability shall not exceed the
original selling price of the equipment.
The equipment warranty shall constitute the sole and exclusive remedy of
any Buyer of Seller equipment and the sole and exclusive liability of the
Seller, its successors or assigns, in connection with equipment purchased
and in lieu of all other warranties expressed implied or statutory, including,
but not limited to, any implied warranty of merchant ability or fitness and all
other obligations or liabilities of seller, its successors or assigns.
The equipment must be returned postage-prepaid. Package it securely
and insure it. You will be charged for parts and labor if you lack proof of
date of purchase, or if the warranty period is expired.

